imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1.5MHz, 600mA Synchronous Step-Down Converter

FEATURES

- ▶ High Efficiency Up to 95%
- Guaranteed 600mA Output Current
- ➢ 2.5V to 5.5V Input Voltage Range
- > 1.5MHz Constant Frequency Operation
- No external Schottky Diode Needed
- Adjustable Output Voltages From 0.6V to VIN
- Fixed Output Voltage Options Available
- 100% Duty Cycle Low-Dropout Operation
- ➢ 0.1µA Shutdown Current
- ➢ SOT23-5 Package

TYPICAL APPLICATIONS

- Cellular phones
- Blue Tooth Headsets
- Portable Audio Players
- Mobile Phones
- Wireless and DSL Modems
- Digital Still Cameras
- Portable Instruments
- Mp3 Player

DESCRIPTION

The FT440 is a 1.5MHz constant frequency, slope compensated current mode step down converter. Capable of delivering 600mA output current over a wide input voltage from 2.5V to 5.5V, the FT440 is ideally suited for single Li-Ion battery powered application.

The FT440 integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. The FT440 automatically turns off the synchronous rectifier to increase efficiency while enters discontinuous PWM mode.

The FT440 can run at 100% duty cycle for low dropout operation, maximizing battery life in portable application. FT440 consumes less than 1uA when enter shutdown mode.

The FT440 is available in a fixed output voltages of 1.5V, 1.8V, and 2.5V, and is also available in an adjustable output voltage version capable of generating output voltages from 0.6V to VIN .The FT440 is available in a 5-pin SOT23-5 package.

TYPICAL APPLICATION CIRCUIT

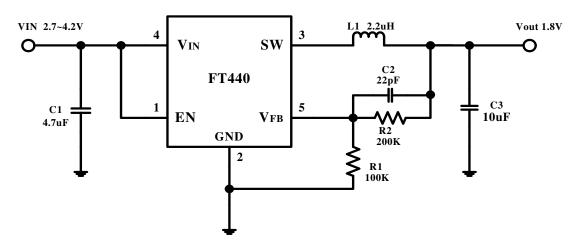


Figure 1: Typical Application Circuit

ABSOLUTE MAXIMUM RATINGS

VIN to GND	-0.3V to 6V
EN to GND	0.3V to (VIN+0.3)
VFB to GND	0.3V to (VIN+0.3)
SW to GND	-0.3V to (VIN+0.3)
Peak SW Sink and Source Current	Internally Limited
Junction to Ambient Thermal Resistance (θ_{JA})	250°C/W
Operating Temperature Range	-40°C to +85°C
Junction Temperature	40°C to +150°C
Storage Temperature Range	55℃ to +150℃
Lead Temperature (Soldering, 10sec)	300°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

PIN COMFIGURATION

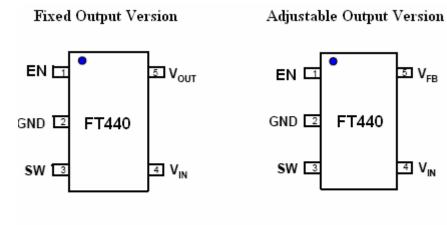


Figure 2: Package Top View

TERMINAL DEFINITION

Pin	Name	Description
1	EN	Enable control input
2	GND	Ground
3	SW	Switching node, connecting to inductor
4	Vin	Power input
5	VFB/Vout	Feedback node. VFB for adjustable version, and Vout for fixed output version

Table 1

ऽ V_{FB}

4 V_{IN}

ORDERING INFORMATION

FT44012

Designator	Symbol	Output Voltage
	А	ADJ
	В	1.5V
	С	1.8V
1)	D	2.5V
	Е	1.2V
	F	2.8V
	G	3.3V
Designator	Symbol	Marking Rule
(2)	а	Marking Rule a
2	b	Marking Rule b

Table 2

MARKING RULE a

Part Number	Top Mark	Output Voltage
FT440Aa	1AaXY	ADJ
FT440Ba	1BaXY	1.5V
FT440Ca	1CaXY	1.8V
FT440Da	1DaXY	2.5V
FT440Ea	1EaXY	1.2V
FT440Fa	1FaXY	2.8V
FT440Ga	1GaXY	3.3V

Table 3

MARKING RULE b

Part Number	Top Mark	Output Voltage
FT440Ab	A1XY	ADJ
FT440Bb	A2XY	1.5V
FT440Cb	A3XY	1.8V
FT440Db	A4XY	2.5V
FT440Eb	A5XY	1.2V
FT440Fb	A6XY	2.8V
FT440Gb	A7XY	3.3V

Table 4

BLOCK DIAGRAM

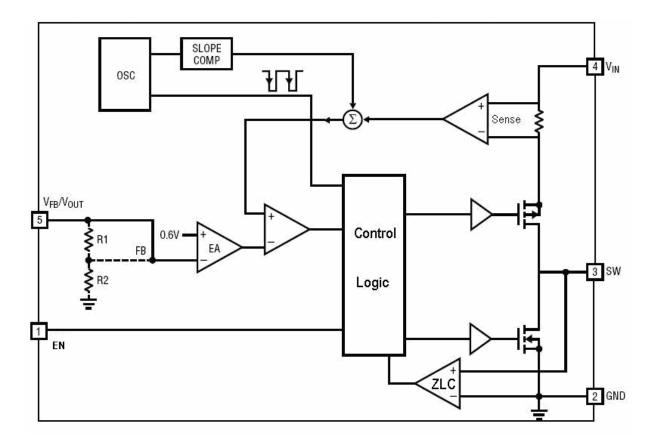
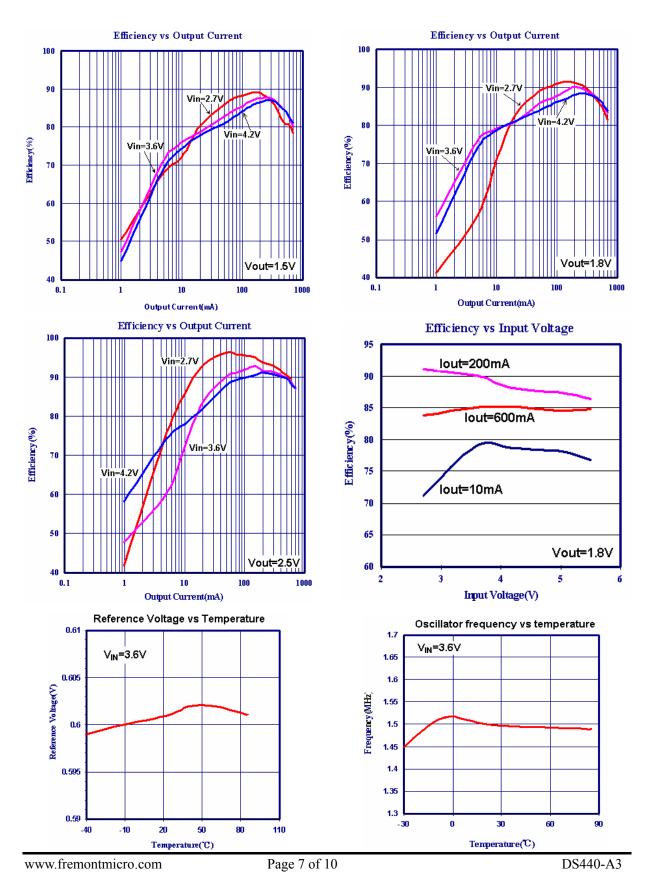
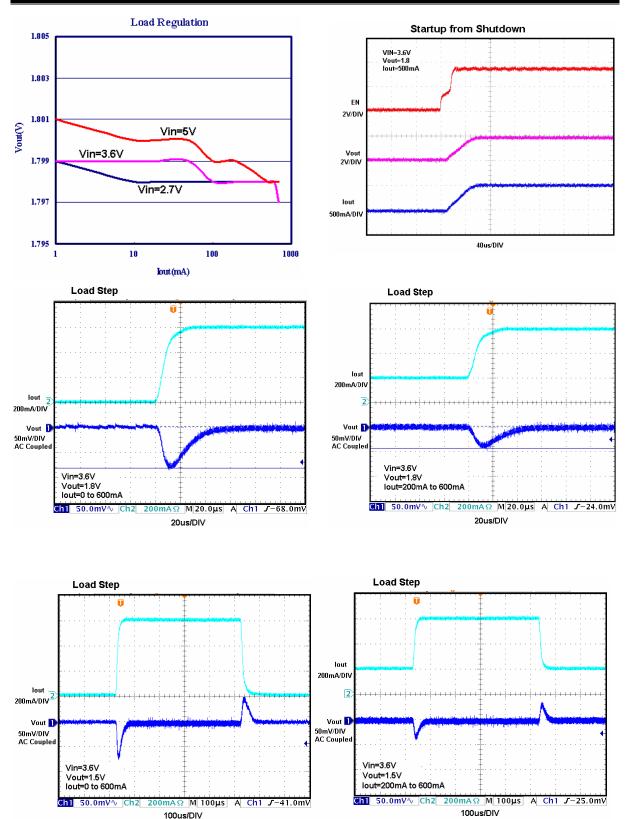


Figure 4: FT440 Block Diagram

ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage Range	VIN		2.5		5.5	V	
Under Voltage Lockout Threshold	VUVLO	V _{IN} rising	2.2	2.35	2.5	V	
Operating Supply Current		V _{FB} =0.5 or Vout=90%		300	450	uA	
Shutdown Supply Current		$V_{EN} = 0V, V_{IN} = 4.2V$		0.1	1	uA	
A line (11) Warrish David I (in		$T_A = 25^{\circ}C$	0.588	0.6	0.612		
Adjustable Version Regulation Voltage	Vfb	$0 < T_A < 85^{\circ}C$	0.585	0.6	0.615		
vonage		$-40^{\circ}C < T_A < 85^{\circ}C$	0.582	0.6	0.618		
		FT440Ba / FT440Bb	1.455	1.5	1.545	v	
		FT440Ca / FT440Cb	1.746	1.8	1.854		
Fixed Output Regulation Voltage	N 7	FT440Da / FT440Db	2.425	2.5	2.575		
	Vout	FT440Ea / FT440Eb	1.164	1.2	1.236		
		FT440Fa / FT440Fb	2.716	2.8	2.884		
		FT440Ga / FT440Gb	3.2	3.3	3.4		
Output Voltage Line Regulation		$V_{IN} = 2.5V$ to 5.5V		0.04	0.4	%/V	
Output Voltage Load Regulation		$I_{OUT} = 0 mA$ to $600 mA$		0.5		%	
Inductor Current Limit	Ilim	$V_{IN} = 3.6V, V_{FB} = 0.5V$ or Vout=90%	0.85	1.1	1.35	А	
Q : 11-4 Frances	V _{FB} =0.6 or V _{out} =100% 1.2	1.5	1.8	MHz			
Oscillator Frequency	fsw	V _{FB} =0 or V _{out} =0		400		KHz	
PMOS On Resistance	Ronp	$I_{SW} = -100 \text{mA}$		0.36	0.5	Ω	
NMOS On Resistance	Ronn	$I_{SW} = 100 \text{mA}$		0.33	0.45	Ω	
SW Leakage Current		$EN = 0, V_{IN} = 5.5V,$ $V_{SW} = 5.5V \text{ or } 0V$			1	uA	
EN Threshold	VIH	$V_{IN} = 2.5V$ to 5.5V	0.3	1	1.5	V	
EN Leakage Current	Ien	$V_{IN} = 5.5 V, EN = V_{IN}$		0.01	1	uA	

 $(V_{IN} = V_{EN} = 3.6V, T_A = 25^{\circ}C$ unless otherwise specified.)


Table 5

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATION INFORMATION

Figure5 below shows the typical application circuit with FT4402 fixed output versions.

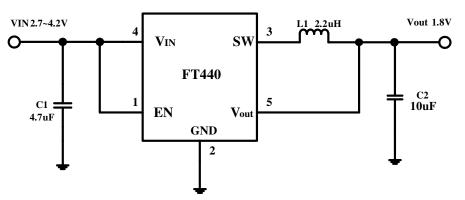


Figure 5: Typical Application Circuit with fixed output versions

Inductor Selection

Under normal operation, the inductor maintains continuous current to the output. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current, and small value inductors result in higher ripple currents. The inductor value can be derived from the following equation:

$$L = \frac{V_{out} \times (V_{IN} - V_{out})}{V_{IN} \times \Delta I_L \times f_{osc}}, \text{ Where } \angle I_L \text{ is inductor ripple current.}$$

Input Capacitor Selection

The input capacitor reduces input voltage ripple to the converter; a 4.7uF ceramic capacitor is recommended for most applications.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. The output ripple \triangle Vout approximately:

$$\Delta V_{OUT} \cong \Delta I_L \times (ESR + \frac{1}{8fC_{OUT}})$$

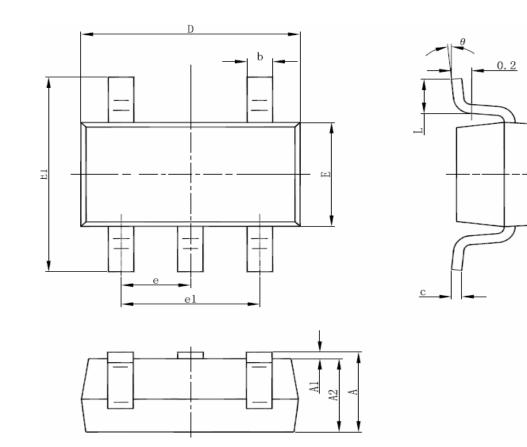

Output Voltage Programming

Figure1 above shows the typical application with FT4402 adjustable version. The external resistor sets the output voltage according to following equation:

$$V_{OUT} = 0.6V \times (1 + \frac{R2}{R1})$$

SOT23-5 PACKAGE

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.95	(BSC)	0.037 (BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	6°	