: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Fremont Micro Devices

$1.5 \mathrm{MHz}, 900 \mathrm{~mA}$ Synchronous Step-Down Converter

FEATURES

$>$ High Efficiency - Up to 95%
> Guaranteed 900 mA Output Current
> 2.5 V to 5.5 V Input Voltage Range
$>1.5 \mathrm{MHz}$ Constant Frequency Operation
$>$ No external Schottky Diode Needed
> Adjustable Output Voltages From 0.6V to VIN
> Fixed Output Voltage Options Available
> 100\% Duty Cycle Low-Dropout Operation
$>0.1 \mu \mathrm{~A}$ Shutdown Current
> SOT23-5 Package

TYPICAL APPLICATIONS

> Cellular phones
> DSP Core Supplies
> XDSL Applications
> USB Powered Modems
> Digital Still Cameras
> Portable Instruments
> PC Cards and Notebooks

DESCRIPTION

The FT441 is a 1.5 MHz constant frequency, slope compensated current mode step down converter. It is ideal for portable equipment requiring very high current up to 0.9A from single-cell Lithium-ion batteries while still achieving over 90% efficiency during peak load conditions.

The FT441 integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. The FT441 automatically turns off the synchronous rectifier to increase efficiency while enters discontinuous PWM mode.

The FT441 can run at 100% duty cycle for low dropout operation, maximizing battery life in portable application. FT441 consumes less than 1uA when enter shutdown mode.

The FT441 is available in a fixed output voltages of $1.2 \mathrm{~V}, 1.5 \mathrm{~V}$, and 1.8 V , and is also available in an adjustable output voltage version capable of generating output voltages from 0.6 V to VIN .The FT441 is available in a 5 -pin SOT23-5 package.

TYPICAL APPLICATION CIRCUIT

Figure 1: Typical Application Circuit

ABSOLUTE MAXIMUM RATINGS

VIN to GND -0.3 V to 6 V
EN to GND. -0.3 V to $(\mathrm{VIN}+0.3)$
VFB to GND -0.3 V to (VIN+0.3)
SW to GND. -0.3 V to (VIN+0.3)
Peak SW Sink and Source Current .Internally Limited
Junction to Ambient Thermal Resistance (θ_{JA}). $250^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature. $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

PIN COMFIGURATION

SOT23-5
Figure 2: Package Top View

TERMINAL DEFINITION

Pin	Name	
$\mathbf{1}$	EN	Enable control input
$\mathbf{2}$	GND	Ground
$\mathbf{3}$	$\mathbf{S W}$	Switching node, connecting to inductor
$\mathbf{4}$	VIN	Power input
$\mathbf{5}$	$\mathbf{V F B}_{\text {FB }} / \mathbf{V o u t ~}$	Feedback node. VFB for adjustable version, and Vout for fixed output version

Table 1

ORDERING INFORMATION

FT441(1)(2)

Designator	Symbol	Output Voltage
(1)	A	ADJ
	B	1.5 V
	C	1.8 V
	D	2.5 V
	E	1.2 V
	F	2.8 V
	G	3.3 V
Designator	Symbol	Package Type
(2)	a	SOT23-5

Table 2

MARKING RULE

Figure 3
(1) Represent Product Series

Symbol	Product Series
1	FT441xx

Table 3
(2) Represent Output Voltage
(3) Represent Package Tape
(4) 5) For internal reference

Fremont Micro Devices

BLOCK DIAGRAM

Figure 4: FT441 Block Diagram

Fremont Micro Devices

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{EN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Voltage Range	VIN		2.5		5.5	V
Under Voltage Lockout Threshold	Vuvio	Vin rising	2.2	2.35	2.5	V
Operating Supply Current		$\mathrm{V}_{\mathrm{FB}}=0.5$ or Vout $=90 \%$		300	450	uA
Shutdown Supply Current		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.2 \mathrm{~V}$		0.1	1	uA
Adjustable Version Regulation Voltage	$\mathrm{V}_{\text {fb }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.588	0.6	0.612	V
		$0<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	0.585	0.6	0.615	
		$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	0.582	0.6	0.618	
Fixed Output Regulation Voltage	Vout	FT441Ba	1.455	1.5	1.545	
		FT441Ca	1.746	1.8	1.854	
		FT441Da	2.425	2.5	2.575	
		FT441Ea	1.164	1.2	1.236	
		FT441Fa	2.716	2.8	2.884	
		FT441Ga	3.2	3.3	3.4	
Output Voltage Line Regulation		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 5.5 V		0.1	0.5	\%/V
Output Voltage Load Regulation		Iout $=0 \mathrm{~mA}$ to 900 mA		0.5		\%
Inductor Current Limit	Ilim	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.5 \mathrm{~V} \\ & \text { or Vout }=90 \% \end{aligned}$	1.15	1.5	1.8	A
Oscillator Frequency	fsw	$\mathrm{V}_{\text {FB }}=0.6$ or $\mathrm{V}_{\text {out }}=100 \%$	1.2	1.5	1.8	MHz
		$V_{\text {FB }}=0$ or $\mathrm{V}_{\text {out }}=0$		400		KHz
PMOS On Resistance	Ronp	Isw $=-100 \mathrm{~mA}$		0.28	0.4	Ω
NMOS On Resistance	Ronn	Isw $=100 \mathrm{~mA}$		0.22	0.35	Ω
SW Leakage Current		$\begin{aligned} & \mathrm{EN}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}, \\ & \mathrm{~V} \text { sw }=5.5 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$			1	uA
EN Threshold	V_{IH}	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$ to 5.5 V	0.3	1	1.5	V
EN Leakage Current	Ien	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{EN}=\mathrm{V}_{\text {IN }}$		0.01	1	uA

Table 4

Fremont Micro Devices

TYPICAL PERFORMANCE CHARACTERISTICS

Fremont Micro Devices

Fremont Micro Devices

APPLICATION INFORMATION

Figure4 below shows the typical application circuit with FT441 fixed output versions.

Figure 4 Typical Application Circuit with fixed output versions

Inductor Selection

Under normal operation, the inductor maintains continuous current to the output. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current, and small value inductors result in higher ripple currents. The inductor value can be derived from the following equation:
$L=\frac{V_{\text {out }} \times\left(V_{\text {IN }}-V_{\text {out }}\right)}{V_{I N} \times \Delta I_{L} \times f_{\text {osc }}}$, Where $\Delta \mathrm{I}_{\mathrm{L}}$ is inductor ripple current.

Input Capacitor Selection

The input capacitor reduces input voltage ripple to the converter; a 10 uF ceramic capacitor is recommended for most applications.

Output Capacitor Selection

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. The output ripple Δ Vout approximately:

$$
\Delta V_{O U T} \cong \Delta I_{L} \times\left(E S R+\frac{1}{8 f C_{\text {OUT }}}\right)
$$

Output Voltage Programming

Figure1 above shows the typical application with FT4412 adjustable version. The external resistor sets the output voltage according to following equation:

$$
V_{\text {OUT }}=0.6 V \times\left(1+\frac{R 2}{R 1}\right)
$$

Fremont Micro Devices

SOT23-5 PACKAGE

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	1.050	1.250	0.041	0.049				
A1	0.000	0.100	0.000	0.004				
A2	1.050	1.150	0.041	0.045				
b	0.300	0.500	0.012	0.020				
c	0.100	0.200	0.004	0.008				
D	2.820	3.020	0.111	0.119				
E	1.500	1.700	0.059	0.067				
E1	2.650	2.950	0.104	0.116				
e	$0.95(B S C)$							$0.037(B S C)$
e1	1.800	2.000	0.071	0.079				
L	0.300	0.600	0.012	0.024				
θ	0°	8°	0°	6°				

