imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Finisar

Product Specification Short-Wavelength GBIC Transceiver

FTL-8519-3D

Product Features

- Up to 1.25Gb/s bi-directional data links
- 850nm VCSEL Laser Transmitter
- Optional Digital Diagnostics Functions
- Extended Operating Temperature Range (-10°C to +85°C)
- Compatible with 3.3V & 5V Systems
- Hot-Pluggable (complies with GBIC specification Rev. 5.5)
- Fully metallic enclosure for low EMI
- Low power dissipation
- RoHS compliant and Lead Free

Finisar's FTL-8519-3D 850nm GBIC transceivers comply with GBIC Specification Revision 5.5^1 . They are compatible with the Gigabit Ethernet as specified in IEEE Std 802.3^2 , Fibre Channel FC-PH, PH2, PH3³ and FC-PI-2 Rev. 10.0^4 . They are RoHS compliant and lead-free per Directive 2002/95/EC⁵ and Finisar Application Note AN-2038⁶.

Product Selection

Part Number	Digital Diagnostics?					
FTL-8519-3D	No					
FTL-8519-3D-DD	Yes					

Applications

- 1.0625Gb/s Fibre Channel
- 1.25 Gigabit Ethernet

I. Pin Out

Pin Name	Pin #	Sequence
RX_LOS	1	2
GND	2	2
GND	3	2
MOD_DEF(0)	4	2
MOD_DEF(1)	5	2
MOD_DEF(2)	6	2
TX_DISABLE	7	2
GND	8	2
GND	9	2
TX_FAULT	10	2
(not supported)		
GND	11	1
-RX_DAT	12	1
+RX_DAT	13	1
GND	14	1
V _{CC}	15	2
V _{CC}	16	2
GND	17	1
+TX_DAT	18	1
-TX_DAT	19	1
GND	20	1

Table 1. GBIC to host connector pin assignment

"Sequence" indicates the order in which pins make contact when the device is hot plugged. Also see "Table 3: Signal Definitions" in the GBIC Specification Revision 5.5.¹

II. Electrical Power Interface

Finisar FTL-8519-3D GBICs have an extended power supply voltage range of 3.15 V to 5.5 V as described in Table 2. They are compatible with both 3.3V and 5 V systems.

+5/3.3 Volt Electrical Power Interface									
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions			
Supply Current	Is		190	300	mA				
Surge Current	I _{surge}			330	mA	Hot plug			
Absolute Supply Voltage	V _{max}	-0.3		6	V	Not to be applied continuously			
Operating Supply Voltage	V _{cc}	3.15	3.3, 5.0	5.5	V				

 Table 2. Electrical power interface

III. Low Speed Signals

RX_LOS, and TX_DISABLE are TTL signals as described in Table 3. MOD_DEF(1) (SCL) and MOD_DEF(2) (SDA), are open drain CMOS signals (see section VI, "Serial Communication Protocol"). Both MOD_DEF(1) and MOD_DEF(2) must be pulled up to host_Vcc. If host_Vcc is 3.3V, then they must be pulled to 3.3V. If host_Vcc is 3.3V, do not pull the MOD_DEF pins to 5V.

For more detailed information, see sections 5.3.1 - 5.3.8 in the GBIC Specification Rev. 5.5^{1} .

Low Speed Signals, Electronic Characteristics										
Parameter	Symbol	Min	Max	Units	Notes/Conditions					
GBIC Output LOW	V _{OL}	0	0.5	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector					
GBIC Output HIGH	V _{OH}	host_Vcc - 0.5	$host_Vcc + 0.3$	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector					
GBIC Input LOW	V _{IL}	0	0.8	V	4.7k to 10k pull-up to Vcc, measured at GBIC side of connector*					
GBIC Input HIGH	V _{IH}	2	Vcc + 0.3	V	4.7k to 10k pull-up to Vcc, measured at GBIC side of connector*					

*Note V_{IH} and V_{IL} are the same for both 5V and 3.3V operation

 Table 3. Low speed signals – electronic characteristics

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
RX_LOS Assert Level		-30			dBm	
RX_LOS Deassert Level				-19	dBm	
RX_LOS Hysteresis		0.5			dB	
RX_LOS Assert Delay	t_loss_on		44	100	µsec	From detection of loss of signal to assertion of RX_LOS
RX_LOS Negate Delay	t_loss_off		44	100	µsec	From detection of presence of signal to negation of RX_LOS
TX_DISABLE Assert Time	t_off			10	µsec	Rising edge of TX_DISABLE to fall of output signal below 10% of nominal
TX_DISABLE Negate Time	t_on			1000	µsec	Falling edge of TX_DISABLE to rise of output signal above 90% of nominal
TX_DISABLE Reset Time	t_reset	10			µsec	TX_DISABLE HIGH before TX_DISABLE set LOW

Table 4. Low speed signal parameters

IV. High Speed Electrical Interface

All high-speed PECL signals are AC-coupled internally.

High Speed Electrical Interface										
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions				
Data Input Voltage	V _{in}	650		2000	mV	PECL differential peak - peak				
Data Output Voltage	V _{out}	370		2000	mV	PECL differential peak - peak				
PECL rise/fall	t _r ,t _f			260	psec	20%-80% differential				
Bit Error Rate	BER			10 ⁻¹²		PRBS 2 ⁷ - 1 test data pattern				
Tx Input Impedance	Zin		75		ohm					
Rx Output Impedance	Z _{out}		75		ohm					

 Table 5. High-speed electrical interface

V. Optical Parameters

Optical Parameters						
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Transmitter Center Wavelength	λ_{c}	820	850	860	nm	
Transmitter Spectral Width (RMS)	Δλ		0.5	0.85	nm	RMS
Transmitter Optical Output Power	Pout	-9.5		-3.5	dBm	Average Power
Transmitter Extinction Ratio	OMI	9			dB	
Relative Intensity Noise	RIN			-117	dB/Hz	
Transmitter Eye Opening		60			%	Conforms to IEEE 802.3 and Fibre Channel Eye Masks
Total Transmitter Jitter	TJ_{TX}			180	ps	Peak to peak, filtered
Transmitter Rise/Fall Time	Tr/Tf			210	ps	Unfiltered 20%-80%
Optical Input Wavelength	λ_{in}	770		860	nm	
Optical Receiver Sensitivity	R _{XSENS}			-19	dBm	BER $< 10^{-12}$ w/ PRBS 2 ⁷ - 1 test data pattern @ 1.25Gb/s
Average Received Power	R _{XMAX}			0	dBm	
Max Reflectivity	-			-14	dB	
Total Receiver Jitter	TJ _{RX}			180	ps	Peak to peak, filtered in loopback

 Table 6. Optical parameters

VI. General Specifications

General										
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions				
Data Rate	BR		1.25, 1.0625			Fibre Channel, IEEE 802.3 Compatible. Rate tolerance = ±100ppm				
Fiber Length	L			550	m	50µm 500MHz-km Fiber				
Fiber Length	L			275	m	62.5μm 200MHz-km Fiber				

Table 7. General specifications

VII. Environmental Specifications

Note that the GBIC Specification requires an ambient temperature range of 0 to 50°C. Finisar GBICs have an extended range from -10° C to $+85^{\circ}$ C case temperature as specified in Table 8.

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Operating Temp	T _{op}	-10		85	°C	Case Temperature
Relative Humidity	RH	0		85	%	Non Condensing
Storage Temp	T _{sto}	-40		85	°C	
Eye Safety						CDRH and IEC-825 Class 1 Laser Product

Table 8. Environmental Specifications

VIII. Serial Communication Protocol

All Finisar optical GBICs implement serial identification features described for 'Module Definition "4" as outlined in Annex D of the GBIC Specification ¹. These GBICs use an Atmel AT24C01A 128 byte E^2 PROM at address A0H. For details on interfacing with the E^2 PROM, see the Atmel data sheet titled "AT24C01A/02/04/08/16 2-Wire Serial CMOS E^2 PROM."⁷

The FTL-8519-3D also supports extended diagnostic features as described in Finisar Applications Note AN-2030, "Digital Diagnostic Monitoring Interface for Optical Transceivers"⁸, and additional information is available in SFF standard titled: "Digital Diagnostic Monitoring Interface for Optical Transceivers"⁹ (SFF-8472 Rev. 9.3). A controller IC that monitors system parameters such as laser current, module temperature, transmitter power, and received power is accessible at address A2H.

I2C clock speed, digital diagnostic accuracy and digital diagnostic range can be found in the table below. Values in the table represent the worst-case values over temperature, voltage, and life.

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
I ² C Clock Speed		0		100,000	Hz	Bus can be driven blind
Accuracy						
Internal Transceiver	DD _{Temperature}	-3		+3	°C	Measured at controller IC
Temperature	-					
Internal Transceiver	DD _{Voltage}	-3		+3	%	Measured at controller IC
Supply Voltage	_					
Tx Bias Current	DD _{Bias}	-10		+10	%	
Tx Output Power	DD _{TxPower}	-3		+3	dB	100% tested in production
						tested at room temp to $\pm 2 \text{ dB}$
Received Average	DD _{RxPower}	-3		+3	dB	100% tested in production
Power						tested at room temp to $\pm 2 \text{ dB}$
Range						
Internal Transceiver	DD _{Temperature}	-40		100	°C	
Temperature	-					
Internal Transceiver	DD _{Voltage}	3.0		6.0	V	
Supply Voltage						
Tx Bias Current	DD _{Bias}	0		15	mA	
Tx Output Power	DD _{TxPower}	-12		-2	dBm	
Received Average	DD _{RxPower}	-20		1	dBm	
Power						

Table 9. Digital Diagnostic Accuracy and Range Limits

X. Mechanical Specifications

Finisar GBICs are compatible with the mechanical specifications outlined in the GBIC Specification Revision 5.5, Section 6^1 .

Insertion, Extraction, and Retention Forces									
Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions			
GBIC insertion	FI	0		20	Newtons	~4.5 lbs			
GBIC extraction	F _E	0		15	Newtons	~3.3 lbs			
GBIC retention	F _R	130		N/A	Newtons	Straight out ~29.3 lbs			

 Table 10. Insertion, extraction, and retention forces

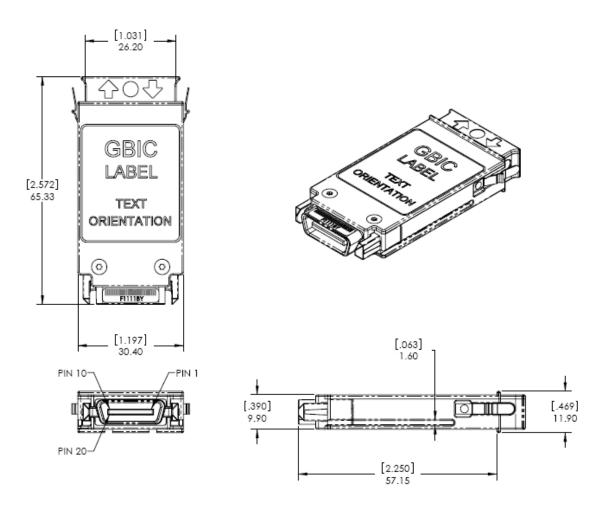


Figure 1. GBIC Outline Drawing

XI. References

- 1. "Gigabit Interface Converter (GBIC) Revision 5.5". Sun Microsystems Computer Company et. al., September 27, 2000. http://playground.sun.com/pub/OEmod/
- 2. IEEE Std 802.3. IEEE Standards Department, 2002.
- 3. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems.
- 4. Fibre Channel Draft Physical Interface Specification (FC-PI-2 Rev. 10.0). American National Standard for Information Systems.
- 5. Directive 2002/95/EC of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment." January 27, 2003.
- 6. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, March 2005.
- 7. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E²PROM". Atmel Corporation. <u>www.Atmel.com</u>
- 8. "Application Note AN-2030: Digital Diagnostic Monitoring Interface for Optical Transceivers", Finisar Corporation, April 2002.
- 9. "Digital Diagnostics Monitoring Interface for Optical Transceivers". SFF Document Number SFF-8472, Revision 9.3.

XI. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1134 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> <u>www.finisar.com</u>