mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Finisar

Preliminary Product Specification 40km Multirate QSFP+ Optical Transceiver Module FTL4E10E1C

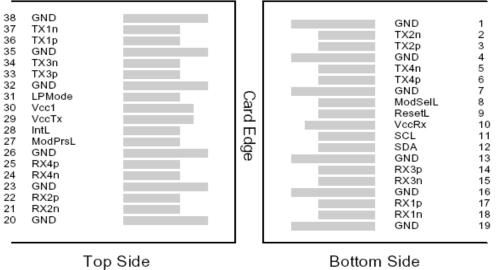
PRODUCT FEATURES

- Hot-pluggable QSFP+ form factor
- Supports 39.8 Gb/s to 41.3 Gb/s aggregate bit rates
- Power dissipation < 3.5W
- 18.5 dB link insertion loss budget
- RoHS-6 compliant
- Commercial case temperature range 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 40km on Single Mode Fiber (SMF)
- Uncooled 4x10Gb/s CWDM transmitter
- XLPPI electrical interface
- Duplex LC receptacles
- Built-in digital diagnostic functions, including Tx/Rx power monitoring

Finisar's FTL4E1QE1C QSFP+ transceiver modules are designed for use in 40 Gigabit Ethernet links over single mode fiber. They are compliant with the QSFP+ MSA¹ and IEEE 802.3bm 40GBASE-ER4². Digital diagnostics functions are available via an I2C interface, as specified by the QSFP+ MSA. The transceiver is RoHS compliant per Directive 2011/65/EU³ and Finisar Application Note AN-2038⁴.

PRODUCT SELECTION

FTL4E1QE1C


- E: Ethernet support
- 1: First generation product
- C: Commercial temperature rate

APPLICATIONS

• 40GBASE-ER4 40G Ethernet

I. Pin Descriptions

Viewed from Top

Viewed from Bottom

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	

26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	
30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Notes

1. Circuit ground is internally isolated from chassis ground.

II. **General Product Characteristics**

Parameter	Value	Unit	Notes
Module Form Factor	QSFP+		
Maximum Aggregate Data Rate	44.6	Gb/s	
Maximum Data Rate per Lane	11.2	Gb/s	
Protocols Supported	Typical applications include OTN OTU3, 40G Ethernet, Infiniband, Fibre Channel, SATA/SAS3		
Electrical Interface and Pin-out	38-pin edge connector		Pin-out as defined by the QSFP+ MSA
Maximum Power Consumption	3.5	Watts	
Management Interface	Serial, I2C-based, 400 kHz maximum frequency		As defined by the QSFP+ MSA

Data Rate Specifications	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate per Lane	BR	9.95		10.3125	Gb/sec	1
Bit Error Ratio	BER			10 ⁻¹²		2
Link distance on SMF-28	d	0.002		40	kilometers	3

Notes:

- Compliant with 40GBASE-ER4 and XLPPI per IEEE 802.3bm.
 Tested with a PRBS 2³¹-1 test pattern.
- 3. Per 40GBASE-ER4, IEEE 802.3bm. Links longer than 30km are considered to be engineered links, with losses less than the worst case specified for the fiber type.

III. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc1,	-0.5		3.6	V	
	VccTx,					
	VccRx					
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	T _{OP}	0		70	°C	
Relative Humidity	RH	0		85	%	1
Damage Threshold, per Lane	DT	3.4			dBm	

Notes:

1. Non-condensing.

IV. Electrical Characteristics ($T_{OP} = 0$ to 70°C, $V_{CC} = 3.1$ to 3.47 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc1,					
	VccTx,	3.1		3.47	V	
	VccRx					
Supply Current	Icc			1.13	А	
Link turn-on time						
Transmit turn-on time				2000	ms	2
Transmitter (per Lane)						
Single ended input voltage tolerance	VinT	-0.3		4.0	V	
Differential data input swing	Vin,pp	120		1200	mVpp	3
Differential input threshold			50		mV	
AC common mode input voltage tolerance		15			V	
(RMS)		15			mV	
Differential input return loss		Per	IEEE P802	2.3ba,	dB	4
		Se	Section 86A.4.1.1		uБ	4
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye mask coordinates {X1, X2			0.11, 0.3	1	UI	5
Y1, Y2}			95, 350		mV	5
Receiver (per Lane)						
Single-ended output voltage		-0.3		4.0	V	
Differential data output swing	Vout,pp	0		800	mVpp	6
AC common mode output voltage (RMS)				7.5	mV	
Termination mismatch at 1 MHx				5	%	
Differential output return loss		Per	IEEE P802	2.3ba,	dB	4
		Se	ction 86A.	4.2.1	uБ	4
Common mode output return loss		Per	IEEE P802	2.3ba,	dB 4	
		Se	ction 86A.	4.2.2	uв	4
Output transition time, 20% to 80%		28			ps	
J2 Jitter output	Jo2			0.42	UI	
J9 Jitter output	Jo9			0.65	UI	
Eye mask coordinates #1 {X1, X2			0.29, 0.5		UI	5
Y1, Y2}			150, 425		mV	5
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. From power-on and end of any fault conditions.
- 3. After internal AC coupling. Self-biasing 100Ω differential input.
- 4. 10 MHz to 11.1 GHz range.
 5. Hit ratio = 5 x 10E-5.
- 6. AC coupled with 100Ω differential output impedance.

V. **Optical Characteristics** ($T_{OP} = 0$ to 70°C, $V_{CC} = 3.1$ to 3.47 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling Speed per Lane		9.95		10.3125	GBd	1
Lane center wavelengths (range)		1264.5 - 1277.5		nm		
		1	284.5 – 1297			
			304.5 - 1317			
		1	<u>324.5 – 1337</u>			
Total Average Launch Power	P _{OUT}			10.5	dBm	
Transmit OMA per Lane	TxOMA	0.3		5.0	dBm	
Average Launch Power per Lane	TXP _x	-2.7		4.5	dBm	2
Difference in launch power between				4.7	dB	
any two lanes (OMA)						
Transmitter Dispersion Penalty	TDP			2.6	dB	
Launch power (OMA) minus TDP per		-0.5			dBm	
lane					ubiii	
Optical Extinction Ratio	ER	5.5			dB	
Sidemode Suppression ratio	SSR _{min}	30			dB	
Average launch power of OFF				-30	dBm	
transmitter, per lane						
Relative Intensity Noise	RIN			-128	dB/Hz	3
Optical Return Loss Tolerance				20	dB	
Transmitter Reflectance				-12	dB	
Transmitter eye mask definition {X1,		(0.25.0/	4, 0.45, 0.25,	0.28 0.41		
X2, X3, Y1, Y2, Y3}		{0.23, 0.4	, 0.43, 0.23,	0.28, 0.4		
Jitter Generation		Per OT	FL3.4 section	4.14.1		
Receiver						•
Signaling Speed per Lane		9.95		10.3125	GBd	4
Lane center wavelengths (range)		1	264.5 - 1277	.5	nm	
		1				
			304.5 - 1317			
		1	<u>324.5 – 1337</u>			
Receive Power (OMA) per Lane	RxOMA			-4.0	dBm	
Average Receive Power per Lane	RXP _x	-21.2		-4.5	dBm	5
Receiver Sensitivity (OMA) per Lane	Rxsens			-19	dBm	
Stressed Receiver Sensitivity (OMA)	SRS			-16.8	dBm	
per Lane						
Damage Threshold per Lane	P _{MAX}			3.8	dBm	
Return Loss	RL			-26	dB	
Jitter Tolerance		Per	OTL3.4, G.8			
Vertical eye closure penalty, per lane				2.2	dB	

Receive electrical 3 dB upper cutoff				12.3	GHz	
frequency, per lane						
LOS De-Assert	LOS _D			TBD	dBm	
LOS Assert	LOSA	TBD			dBm	
LOS Hysteresis			1		dB	

Notes:

- 1. Transmitter consists of 4 lasers operating at up to 10.3 Gb/s each, +/- 20ppm
- 2. Minimum value is informative.
- 3. RIN is scaled by $10*\log(10/4)$ to maintain SNR outside of transmitter.
- 4. Receiver consists of 4 photodetectors operating at up to 10.3125 Gb/s each, +/- 100ppm
- 5. Minimum value is informative, equals min TxOMA with infinite ER and max channel insertion loss.

VI. Memory Map and Control Registers

Compatible with SFF-8436 (QSFP+ MSA)¹. Please see Finisar Application Note AN-2104⁵.

VII. Environmental Specifications

Finisar FTL4E1Q transceivers have an operating temperature range from 0°C to +70°C case temperature.

Environmental Specifications	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T _{op}	0		70	°C	
Storage Temperature	T _{sto}	-40		85	°C	

VIII. Regulatory Compliance

Finisar FTL4E1Q transceivers are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

FTL4E1Q transceiver modules are Class 1 laser eye safety compliant per IEC 60825-1.

IX. Mechanical Specifications

The FTL4E1Q mechanical specifications are compliant to the QSFP+ MSA transceiver module specifications.

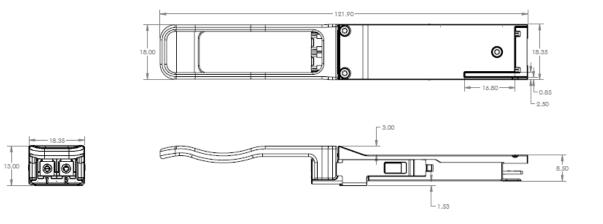


Figure 2 – FTL4E1Q mechanical drawing

Figure 3 – FTL4E1QE1C production label

X. References

- 1. SFF-8436 Specification for QSFP+ Copper and Optical Transceiver, Rev 4.8, October 2013.
- 2. IEEE P802.3bm, Draft 3.0, May 2014 PMD Type 40GBASE-ER4.
- 3. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," June 8, 2011, which supercedes the previous RoHS Directive 2002/95/EC.
- 4. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 5. "Application Note AN-2104: QSFP+ 40G LR4 Transceiver EEPROM Mapping," Rev. A, Finisar Corporation, June, 2013.

XI. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> www.finisar.com