

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Finisar

Preliminary Product Specification

4x10GBASE-LR/W & OTN QSFP+ Optical Transceiver Module

FTL4P1QM1C

PRODUCT FEATURES

- Hot-pluggable QSFP+ form factor
- Supports 4 independent streams of 10G Ethernet or OTN data
- Power dissipation < 2.5W
- RoHS-6 compliant
- Commercial case temperature range 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 10km on Single Mode Fiber (SMF)
- XLPPI electrical interface
- MPO12 receptacle
- Built-in digital diagnostic functions, including Tx/Rx power monitoring

APPLICATIONS

- 10GBASE-LR/LW 10G Ethernet
- OTU2, OTU1e, OTU2e

Finisar's FTL4P1QE1C QSFP+ transceiver modules are designed for use in high density 10 Gigabit Ethernet links over single mode fiber. They are compliant with the QSFP+ MSA^{1,2}, IEEE 802.3ae 10GBASE-LR/LW³, and OTN data rates OTU2, OTU1e, and OTU2e per the ITU⁴. Digital diagnostics functions are available via an I2C interface, as specified by the QSFP+ MSA. The transceiver is RoHS compliant per Directive 2011/65/EU⁵ and Finisar Application Note AN-2038⁶.

PRODUCT SELECTION

FTL4P1QM1C

4: 4 channel moduleP1: Parallel single modeQ: QSFP+ form factor

M: Multiprotocol optical interface

1: First generation product

C: Commercial temperature range

I. Pin Descriptions

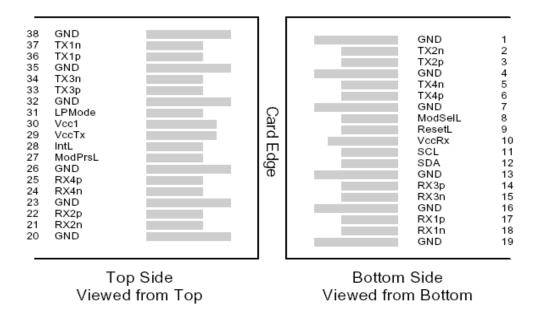


Figure 1 – QSFP+ MSA-compliant 38-pin connector

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	

26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	
30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

<u>Notes</u>

1. Circuit ground is internally isolated from chassis ground.

II. **General Product Characteristics**

Parameter	Value	Unit	Notes
Module Form Factor	QSFP+		
Maximum Aggregate Data Rate	44.4	Gb/s	
Maximum Data Rate per Lane	11.095	Gb/s	
Protocols Supported	10G Ethernet		
Electrical Interface and Pin-out	38-pin edge connector		Pin-out as defined by the QSFP+ MSA
Maximum Power Consumption	2.5	Watts	
Management Interface	Serial, I2C-based, 400 kHz maximum frequency		As defined by the QSFP+ MSA

Data Rate Specifications	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate per Lane	BR	9.95		11.10	Gb/sec	1
Bit Error Ratio	BER			10 ⁻¹²		2
Link distance on SMF-28	d			10	kilometers	

- Notes:
 1. Compliant with 10GBASE-LR/LW, OTU2, OTU1e, and OTU2e and XLPPI.
 2. Tested with a PRBS 2³¹-1 test pattern.

III. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc1,	-0.5		3.6	V	
	VccTx,					
	VccRx					
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	0		70	°C	
Relative Humidity	RH	0		85	%	1
Damage Threshold, per Lane	DT	3.4			dBm	

Notes:

1. Non-condensing.

IV. Electrical Characteristics ($T_{OP} = 0$ to 70°C, $V_{CC} = 3.1$ to 3.47 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc1,					
	VccTx,	3.1		3.47	V	
	VccRx					
Supply Current	Icc			TBD	A	1
Link turn-on time						
Transmit turn-on time				2000	ms	2
Transmitter (per Lane)						
Single ended input voltage tolerance	VinT	-0.3		4.0	V	
Differential data input swing	Vin,pp	120		1200	mVpp	3
Differential input threshold			50		mV	
AC common mode input voltage tolerance		15			mV	
(RMS)		13			III V	
Differential input return loss		Per	IEEE P802	2.3ba,	dB	4
		Se	Section 86A.4.1.1			7
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye mask coordinates {X1, X2			0.11, 0.31	1	UI	5
Y1, Y2}			95, 350		mV	3
Receiver (per Lane)						
Single-ended output voltage		-0.3		4.0	V	
		200		400		
Differential data output swing	Vout,pp	300		600	mVpp	6,7
Differential data output swing	v out,pp	400		800	ш • рр	0,7
		600		1200]	
AC common mode output voltage (RMS)				7.5	mV	
Termination mismatch at 1 MHx				5	%	
Differential output return loss			IEEE P802	,	dB	4
			ction 86A.		ub	7
Common mode output return loss		Per IEEE P802.3ba, Section 86A.4.2.2		dB	4	
				ub	7	
Output transition time, 20% to 80%		28			ps	
J2 Jitter output	Jo2			0.42	UI	
J9 Jitter output	Jo9			0.65	UI	

Eye mask coordinates #1 {X1, X2 Y1, Y2}			0.29, 0.5 150, 425	UI mV	5	
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. From power-on and end of any fault conditions.
- 3. After internal AC coupling. Self-biasing 100Ω differential input.
- 4. 10 MHz to 11.1 GHz range.
- 5. Hit ratio = $5 \times 10E-5$.
- 6. AC coupled with 100Ω differential output impedance.
- 7. Output voltage settable in four discrete ranges via I2C command.

V. Optical Characteristics ($T_{OP} = 0$ to 70°C, $V_{CC} = 3.1$ to 3.47 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling Speed per Lane		9.95		10.095	GBd	1
Lane center wavelength	λ	1290		1330		
Transmit OMA per Lane	TxOMA	-5.2		3.0	dBm	
Transmitter and Dispersion Penalty	TDP			3.2	dB	
Average Launch Power per Lane	TXP_x	-6.0		-1.0	dBm	2
Tranmit OMA per lane minus TDP		-6.2			dBm	
Optical Extinction Ratio	ER	6.0			dB	
Sidemode Suppression ratio	SSR_{min}	30			dB	
Average launch power of OFF				-30	dBm	
transmitter, per lane						
Relative Intensity Noise	RIN			-128	dB/Hz	3
Tx Jitter	Tx_j			20	dB	
Transmitter Reflectance				-12	dB	
Transmitter eye mask definition		Per 802.3	8ae, G.693, a	nd G.691		
Receiver						
Signaling Speed per Lane		9.95		10.095	GBd	4
Lane center wavelength	λ	1260		1355		
Average Receive Power per Lane	RXP_x	-14.4		0.5	dBm	5
Receiver Sensitivity (OMA) per Lane	Rxsens			-12.6	dBm	
Stressed Receiver Sensitivity (OMA)	SRS			-10.3	dBm	
per Lane						
Damage Threshold per Lane	P _{MAX}			1.5	dBm	
Return Loss	$R_{ m L}$			-14	dB	
Receive electrical 3 dB upper cutoff				12.3	GHz	
frequency, per lane						
LOS De-Assert	LOS_D			-14	dBm	
LOS Assert	LOS_A	-30		-17	dBm	
LOS Hysteresis			0.5		dB	

Notes:

- 1. Transmitter consists of 4 lasers operating between 9.95 and 11.10 Gb/s each.
- 2. Minimum value is informative.
- 3. RIN is scaled by 10*log(10/4) to maintain SNR outside of transmitter.
- 4. Receiver consists of 4 photodetectors operating between 9.95 and 11.10 Gb/s each.
- 5. Minimum value is informative, equals min TxOMA with infinite ER and max channel insertion loss.

VI. Digital Diagnostic Specifications

FTL4P1QM1C transceivers can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Min	Тур	Max	Units	Ref.	
Accuracy							
Internally measured transceiver temperature	$\Delta DD_{Temperature}$			5	°C		
Internally measured transceiver supply voltage	$\Delta \mathrm{DD}_{\mathrm{Voltage}}$			3	%		
Measured TX bias current	$\Delta \mathrm{DD}_\mathrm{Biss}$			10	%	1	
Measured TX output power	$\Delta DD_{Tx-Power}$			2	dΒ		
Measured RX received average optical power	$\Delta DD_{Rx-Power}$			2	dB		
Dynamic Range for Rated Accuracy							
Internally measured transceiver temperature	DD _{Temperature}	-5		70	°C		
Internally measured transceiver supply voltage	$\mathrm{DD}_{\mathrm{Voltage}}$	3.1		3.5	V		
Measured TX bias current	$\mathrm{DD}_{\mathrm{Biss}}$	10		90	mA.		
Measured TX output power	DD _{Tx-Power}	-8.2		+0.5	dBm		
Measured RX received average optical power	DD _{Rx-Power}	-14.2		+0.5	dBm		
Max Reporting Range						•	
Internally measured transceiver temperature	DD _{Temperature}	-40		125	°C		
Internally measured transceiver supply voltage	DD _{Voltage}	2.8		4.0	V		
Measured TX bias current	$\mathrm{DD}_{\mathrm{Biss}}$	0		20	mA		
Measured TX output power	DD _{Tx-Fower}	-10		+2	dBm		
Measured RX received average optical power	DD _{Rx-Power}	-22		+2	dBm		

Notes:

1. Accuracy of measured Tx bias current is 10% of the actual bias current from the laser driver to the laser.

VII. Memory Map and Control Registers

Compatible with SFF-8436 (QSFP+). Please see Finisar Application Note AN-2104⁷.

VIII. Environmental Specifications

Finisar FTL4P1QM1C transceivers have an operating temperature range from 0° C to $+70^{\circ}$ C case temperature.

Environmental Specifications	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	Top	0		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

IX. Regulatory Compliance

Finisar FTL4P1QM1C transceivers are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

FTL4P1QM1C transceiver modules are Class 1 laser eye safety compliant per IEC 60825-1.

X. Mechanical Specifications

The FTL4P1QM1C mechanical specifications are compliant to the QSFP+ MSA transceiver module specifications.

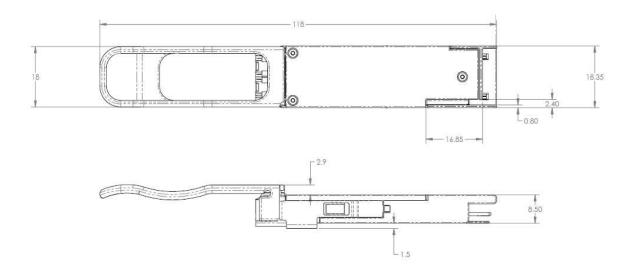


Figure 2 – FTL4P1QM1C mechanical drawing

The FTL4P1QM1C pull tab color is dark blue Pantone 2748.

Figure 3 – FTL4P1QM1C label (not to scale)

The FTL4P1QM1C optical interface accepts an 8° angled MPO connector, with lane assignments as shown in Figure 4.

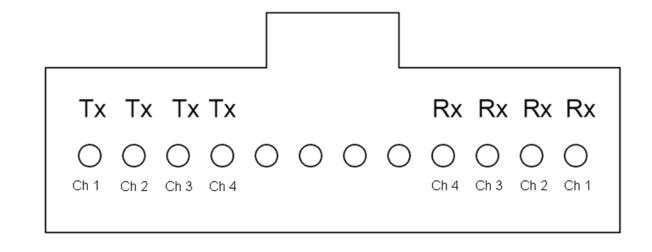


Figure 4 – FTL4P1QM1C optical lane assignment (front view of MPO receptacle)

XI. References

- SFF-8436 Specification for QSFP+ 10 Gbs 4x Pluggable Transceiver, Rev 4.8, October 2013.
- 2. SFF-8636 Specification for Common Management Interface, Rev 1.7, January 2014.
- 3. 802.3-2012, IEEE Standard for Ethernet, Section 4, Clause 52, PMD Types 10GBASE-LR/LW.
- 4. ITU-T G.959.1 Optical Transport Network Phusical Layer Interfaces, 02/2012 and ITU-T G.709/Y.1331 Interfaces for the Optical Transport Network (OTN), 02/2012
- 5. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," June 8, 2011, which supercedes the previous RoHS Directive 2002/95/EC.
- 6. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 7. "Application Note AN-2104: QSFP+ 40G LR4 Transceiver EEPROM Mapping," Rev. A, Finisar Corporation, June, 2013.

XII. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com