

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product Specification

100m 100G QSFP28 SWDM4 Optical Transceiver

FTLC9152RGPL

PRODUCT FEATURES

- Hot-pluggable QSFP28 form factor
- Supports 103.1Gb/s aggregate bit rate
- Power dissipation < 3.5W
- RoHS-6 compliant
- Commercial case temperature range of 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 100m on OM4 Duplex Multimode Fiber (MMF)
- 4x25Gb/s 850mm VCSEL-based transmitter
- 4x25G CAUI-4 electrical interface
- Duplex LC receptacles
- I2C management interface

APPLICATIONS

• 100G Ethernet over Duplex MMF

Finisar's FTLC9152RGPL 100G QSFP28 transceiver modules are designed for use in 100G Ethernet links over duplex multimode fiber. They are compliant with the QSFP28 MSA¹ and IEEE 802.3bm CAUI-4². Digital diagnostics functions are available via the I2C interface, as specified by the QSFP28 MSA¹ and Finisar Application Note AN-2167⁵. The transceiver is RoHS-6 compliant per Directive 2011/65/EU³, and Finisar Application Note AN-2038⁴.

PRODUCT SELECTION

FTLC9152RGPL

R: 100G Ethernet maximum bit rate (103.1Gb/s)

G: 4x25G coarse SWDM optics

P: Pull tab release

L: LC receptacles

I. Pin Descriptions

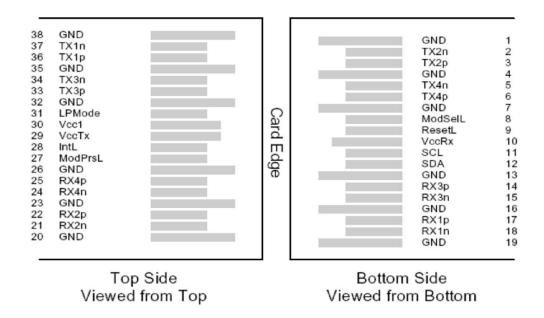


Figure 1 – QSFP28-compliant 38-pin connector (per SFF-8679)

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	

30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

<u>Notes</u>

1. Circuit ground is internally isolated from chassis ground.

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the standard operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	0		70	°C	1
Relative Humidity	RH	15		85	%	2
Receiver Damage Threshold, per Lane	P_{Rdmg}	3.8			dBm	

Notes:

- 1. Temporary excursions case operating temperature of -5 to -75 °C not exceeding 72 hours.
- 2. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to 70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135		3.465	V	
Supply Current	Icc			1.5	A	
Module total power	P			3.5	W	1
Transmitter						
Signaling rate per lane		25.7	78125 ± 100	ppm	Gb/s	
Differential pk-pk input voltage tolerance	Vin,pp,diff			900	mV	
Single-ended voltage tolerance	Vin,pp	-0.35		+3.3	V	
Module stress input test		Per Section 83E.3.4.1, IEEE 802.3bm				
Receiver						
Signaling rate per lane		25.7	78125 ± 100	ppm	Gb/s	
		100		400	mVpp	
Differential data output swing	Vout pp	300		600		2
Differential data output swing	Vout,pp	400	600	800		2
		600		1200		
Eye width		0.57			UI	
Eye height, differential		228			mV	
Vertical eye closure	VEC	5.5			dB	
Transition time (20% to 80%)	$t_{\rm r}, t_{\rm f}$	12			ps	

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. Output voltage is settable in 4 discrete ranges via I2C. Default range is Range 2 (400 800 mV).

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to 70° C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	λ1	λ2	λ3	λ4	Unit	Ref.
Transmitter							
Signaling Speed per Lane			25.78125	± 100ppm		Gb/s	1
Lane center wavelengths (range)	λ	850	880	910	940	nm	
RMS Spectral Width	SW	0.59	0.59	0.59	0.59	nm	
Tx _{OMA} min at max TDEC		-3	-3	-3	-2.9	dBm	
TDEC (OM3)	TDEC	3.3	3.5	3.7	4.2	dB	
Tx _{OMA} - TDEC	P-TDEC	-6.3	-6.5	-6.7	-7.1	dBm	
Tx _{OMA} min	TxOMA	-5.5	-5.5	-5.5	-5.5	dBm	
Relative Intensity Noise	RIN		-	130		dB/Hz	2
Optical Extinction Ratio	ER	2	2	2	2	dB	
Optical Return Loss Tolerance	ORL		•	12		dB	
Average launch power of OFF				30		dBm	
transmitter, per lane			-	-30		abm	
Transmitter eye mask definition {X1,		((202004	5 0 25 0 41 0	(5)		3
X2, X3, Y1, Y2, Y3}		1}	0.5,0.58,0.4.	5,0.35,0.41,0	1.5}		3
Receiver							
Signaling Speed per Lane			25.78125	5 ± 100ppm		GBd	4
Lane center wavelengths (range)	λ	850	880	910	940	nm	
Damage Threshold	DT	3.8	3.8	3.8	3.8	dBm	
Average Receive Power per Lane	RXP _{min}	-9.5	-9.4	-9.4	-9.4	dBm	
(min)	ICAI min	-9.5	-7.4	-9.4	-9.4	ubili	
Average Receive Power per Lane	RXP _{max}	3.4	3.4	3.4	3.4	dBm	
(max)		3.1			3.1		
Receiver Reflectance (max)	Rfl			-12		dB	
Stressed Receiver Sensitivity (OMA)	SRS	-5.2	-5.2	-5.2	-5.2	dBm	5
per Lane				0.6		150	
Back to Back Receiver Sensitivity	RxSens	-8.2	-8.4	-8.6	-8.8	dBm	6
(OMA) per Lane							
Stressed Conditions:	QEQ.	2.2	2.5	2.7	1.2	JD.	1
Stressed eye closure	SEC	3.3	3.5	3.7	4.2	dB	
Stressed eye J2 jitter	J2			UI			
Stressed eye J4 jitter	J4		0	.53		UI	
Stressed Receiver Eye Mask			0.20 0.5 0.5	0.22.0.22.0	4)		
Definition {X1, X2, X3, Y1, Y2,		{0.28,0.5,0.5,0.33,0.33,0.4}				7	
Y3}	TOS	11				dBm	8
LOS De-Assert (max) LOS Assert (min)	LOSD	-11				dBm	8
	LOS _A	-30 0.5				dBm dB	8
LOS Hysteresis Notes:			(J.J		ub	

Notes:

- 1. Transmitter consists of 4 lasers and a 4:1 optical multiplexer.
- 2. Informative, link controlled by TDEC
- 3. Hit Ratio 1.5×10^{-3} hits/sample.
- 4. Receiver consists of a 1:4 optical de-multiplexer and 4 photodetectors.
- 5. 5 x 10⁻⁵ BER (pre-FEC).
- 6. Unstressed receiver sensitivity is information, and assumes 5×10^{-5} BER (pre-FEC).
- 7. Hit Ratio 5 x 10^{-5} hits/sample.
- 8. DC values.

V. Link Budget

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR		103.10		Gb/s	
Bit Error Rate	BER			5x10 ⁻⁵		1
Insertion Loss	IL			1.8	dB	2
Maximum Supported Distances						
Fiber Type						
OM3 MMF	Lmax1			75	m	3
OM4 MMF	Lmax2			100	m	3
OM5 MMF	Lmax3			150	m	3

Notes:

- 1. Tested with a $2^{31} 1$ PRBS at 25.78125 Gb/s
- 2. 850 nm channel can tolerate 1.9 dB insertion loss
- 3. Specified at 103.1Gb/s. Requires RS-FEC on the host to support maximum distance.

VI. Environmental Specifications

Finisar FTLC9152 QSFP28 transceivers have a commercial operating case temperature range of 0°C to +70°C. They can support temporary excursions to case temperatures of -5°C and +75°C without permanent damage (see Section II).

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. Regulatory Compliance

Finisar FTLC9152 QSFP28 transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye	FDA/CDRH	21CFR1040.10 and Laser Notice 50
Safety		
Laser Eye	CSA	IEC 60825-1:2014
Safety		
Electrical	CSA	IEC 60950-1:2006+A1+A2
Safety		
Electrical	UL/CSA	CLASS 3862.13
Safety		CLASS 3862.93

Copies of the referenced certificates to be available at Finisar Corporation upon request.

VIII. Digital Diagnostics Functions

FTLC9152 QSFP28 transceivers support the I2C-based diagnostics interface specified by the QSFP28 MSA¹. See Finisar Application Note AN-2167⁵.

IX. Memory Contents

Per the QSFP28 MSA¹. See Finisar Application Note AN-2167⁵.

XI. Mechanical Specifications

Finisar FTLC9152 QSFP28 transceivers are compatible with the QSFP28 MSA.¹ The pull tab color is grey (Pantone 424U).

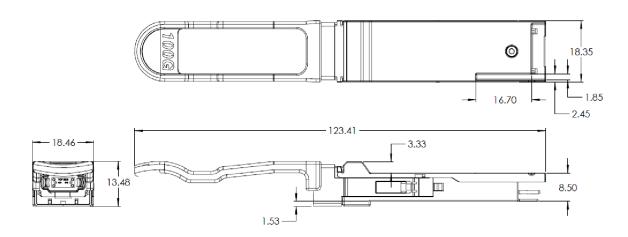


Figure 2. FTLC9152RGPL Mechanical Dimensions.

Figure 3. FTLC9152RGPL Product label (not to scale)

XII. References

- 1. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 (and associated SFF documents)
 - i. SFF-8661
 - ii. SFF-8679
 - iii. SFF-8636
 - iv. SFF-8662
 - v. SFF-8663
 - vi. SFF-8672
 - vii. SFF-8683
- 2. IEEE 802.3bm, CAUI-4 interface.
- 3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 4. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 5. Application Note AN-2167, Finisar Corporation.

For More Information:

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com