

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Product Specification

100m Multirate Parallel MMF 100/128G QSFP28 Optical Transceiver

FTLC9551SEPM

PRODUCT FEATURES

- Hot-pluggable QSFP28 form factor
- Supports 103.1Gb/s to 112.2Gb/s aggregate bit rates
- Power dissipation < 3.5W
- RoHS-6 compliant
- Commercial case temperature range of 0°C to 70°C
- Single 3.3V power supply
- Maximum link length of 100m on OM4 Multimode Fiber (MMF)
- 4x25Gb/s 850mm VCSEL-based transmitter
- 4x25G electrical interface
- Single MPO12 receptacle
- I2C management interface

APPLICATIONS

- 100GBASE-SR4 100G Ethernet
- 128G Fibre Channel
- 4x28Gb/s Multimode OTN

Finisar's FTLC9551SEPM 100G QSFP28 transceiver modules are designed for use in 100 Gigabit Ethernet, 128GFC and 4x28G OTN client links over multimode fiber. They are compliant with the QSFP28 MSA¹, 128GFC² and IEEE 802.3bm 100GBASE-SR4³ and CAUI-4³. Digital diagnostics functions are available via the I2C interface, as specified by the QSFP28 MSA¹ and Finisar Application Note AN-2142⁴. The transceiver is RoHS-6 compliant per Directive 2011/65/EU⁵ and Finisar Application Note AN-2038⁶.

PRODUCT SELECTION

FTLC9551SEPM

S: 128GFC maximum bit rate (112.2 Gb/s)

E: 4x25G parallel optics

P: Pull tab release

M: MPO receptacle

I. Pin Descriptions

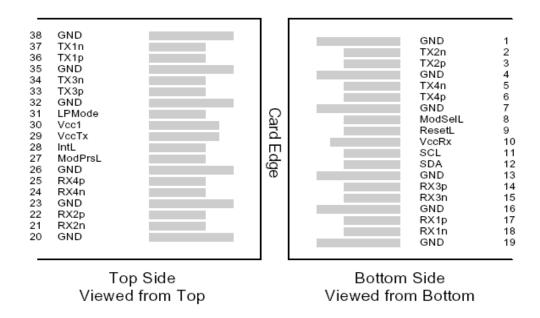


Figure 1 – QSFP28-compliant 38-pin connector (per SFF-8679)

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	

30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Notes

1. Circuit ground is internally isolated from chassis ground.

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	-5		75	°C	
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P_{Rdmg}	5.5			dBm	

Notes:

1. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to 70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135		3.465	V	
Supply Current	Icc			1.5	A	
Module total power	P			3.5	W	1
Transmitter						
Signaling rate per lane		25.78		28.05	Gb/s	2
Differential data input voltage per lane	Vin,pp,diff			900	mV	
Single-ended voltage tolerance	Vin,pp	-0.35		+3.3	V	
Module stress input test		Per Section 13.3.11.2.1, OIF CEI-28G-VSR				
Receiver						
Signaling rate per lane		25.78		28.05	Gb/s	2
		100		400		
Differential data output swing	Vout nn	300		600		3
Differential data output swilig	Vout,pp	400	600	800	mVpp	3
		600		1200		
Eye width		0.57			UI	
Eye height, differential		228			mV	
Vertical eye closure	VEC	5.5			dB	
Transition time (20% to 80%)	$t_{\rm r,} t_{\rm f}$	12			ps	

Notes:

- 1. Maximum total power value is specified across the full operational temperature and voltage range when CDRs are locked or a lack of input signal results in squelch being activated. If incorrect frequencies cause the CDRs to continuously attempt to lock, maximum power dissipation may reach 4.5 W.
- $2. \pm 100$ ppm
- 3. Output voltage is settable in 4 discrete ranges via I2C. Default range is 400 800 mV.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to 70°C, $V_{CC} = 3.135$ to 3.465 Volts)

Optical characteristics are dependent on data rate and protocol. Ethernet 100GBASE-SR4, OTU4, and 128G Fibre Channel optical characteristics are as follows:

100GBASE-SR4 Ethernet Operation

Parameter Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling Speed per Lane		25.78125 ± 100ppm		Gb/s	1	
Center wavelength		840		860	nm	
RMS Spectral Width	SW			0.6	nm	
Average Launch Power per Lane	TXP_x	-8.4		2.4	dBm	
Transmit OMA per Lane	TxOMA	-6.4		3	dBm	
Launch Power [OMA] minus TDEC	P-TDEC	-7.3			dBm	
per Lane				1.0		
TDEC per Lane	TDEC			4.3	dBm	
Optical Extinction Ratio	ER	2			dB	
Optical Return Loss Tolerance	ORL			12	dB	
Encircled Flux	FLX		86% at 19 u 30% at 4.5 u			
Average Launch Power of OFF Transmitter, per Lane				-30	dBm	
Relative Intensity Noise	RIN				dB/Hz	
Transmitter Eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.3,0.38,0.45,0.35,0.41,0.5}			2	
Receiver						
Signaling Speed per Lane		25.	78125 ± 100	ppm	GBd	3
Center wavelength		840		860	nm	
Damage Threshold	DT	3.4			dBm	
Average Receive Power per Lane	RXP_x	-10.3		2.4	dBm	4
Receive Power (OMA) per Lane	RxOMA			3	dBm	
Receiver Reflectance	Rfl			-12	dB	
Stressed Receiver Sensitivity (OMA) per Lane	SRS			-5.2	dBm	
Stressed Conditions:			<u> </u>			
Stressed Eye Closure	SEC		4.3		dB	
Stressed Eye J2 Jitter	J2		0.39		UI	
Stressed Eye J4 Jitter	J4	0.59		UI		
OMA of each aggressor lane	34	3		dBm		
Stressed Receiver Eye Mask						
Definition {X1, X2, X3, Y1, Y2,		{0.28,0.5,0.5,0.33,0.33,0.4}			5	
Y3}		/ -	, , -,-	, ,		
LOS De-Assert	LOS_D			-12	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis	•	0.5	2		dB	

Notes:

- 1. Transmitter consists of 4 lasers operating at a maximum speed of 25.78125Gb/s ±100ppm each.
- 2. Hit Ratio 1.5×10^{-3} hits/sample.
- 3. Receiver consists of 4 photodetectors operating at a maximum speed of 25.78125Gb/s ±100ppm each.
- 4. Minimum value is informative only and not the principal indicator of signal strength.
- 5. Hit Ratio 5 x 10⁻⁵ hits/sample.

OTU4 and 128 G Fibre Channel Operation

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling Speed per Lane		27.95		28.05	Gb/s	4
Center wavelength		840		860	nm	
RMS Spectral Width	SW			0.6	nm	
Average Launch Power per Lane	TXP_x	-9		2.4	dBm	
Transmit OMA per Lane	TxOMA	-7.1		3.0	dBm	
Launch Power [OMA] minus TDEC	P-TDEC	-8.0			dBm	
per Lane						
TDEC per Lane	TDEC			5.0	dB	
Optical Extinction Ratio	ER	3			dB	
Encircled Flux	FLX	>86% at	t 19um, <309	% at 4.5um	dBm	
Average launch power of OFF				-30	dBm	
transmitter, per lane						
Transmitter eye mask definition {X1,		{0.31,0.4	41,0.46,			5
X2, X3, Y1, Y2, Y3}		1	0.35,0.38,0.5			
Optical Return Loss Tolerance	ORL			12	dB	
Receiver						
Signaling Speed per Lane		27.95		28.05	Gb/s	6
Center wavelength		840		860	nm	
Damage Threshold	DT	3.4			dBm	
Average Receive Power per Lane	RXP_x	-10.9		2.4	dBm	7
Receive Power (OMA) per Lane	RxOMA			3.0	dBm	
Receiver Reflectance	Rfl			-12	dB	
Stressed Receiver Sensitivity (OMA)	SRS			-4.7	dBm	8
per Lane						
Stressed receiver eye mask definition		{0.29,0.3				9
{X1, X2, X3, Y1, Y2, Y3}		1	0.35,0.35,0.4			
LOS De-Assert	LOS_D			-13	dBm	
LOS Assert	LOS_A	-30			dBm	
LOS Hysteresis		0.5	2		dB	

Notes:

- 6. Transmitter consists of 4 lasers operating at a maximum speed of 27.95 Gb/s each for OTU4 and 28.05 Gb/s each for Fibre Channel.
- 7. Hit ratio = 1.5×10^{-3} hits/sample.
- 8. Receiver consists of 4 photodetectors operating at a maximum speed of 27.95 Gb/s each for OTU4 and 28.05 Gb/s each for Fibre Channel.
- 9. Minimum value is informative only and not the principal indicator of signal strength.
- 10. Test conditions for measuring SRS are defined as follows:

Stressed eye closure, lane under test	SEC	5.0	dB	
Stressed eye J2 jitter, lane under test	J2	0.38	UI	
Stressed eye J4 jitter, lane under test	J4	0.51	UI	
OMA of each aggressor lane		3	dBm	

Stressed Eye Closure (SEC) is measured per IEEE 802.3 95.8.8 (reference [22]), but adjusted to 1×10^{-6} instead of 1×10^{-5} bit error ratio. Thus SEC is given by SEC = $10 \log_{10}[\text{OMA}/(2*4.2649*\text{R})]$ with R as defined by equation (95-3) in 95.8.5, The values of M1 and M2 in equation (95-3) are set to zero. The combination of the O/E and the oscilloscope used to measure the waveform has a fourth-order Bessel-Thomson filter response with a bandwidth of 19.34 GHz.

11. Hit ratio = 1×10^{-5} hits/sample.

V. **General Specifications**

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			112.2	Gb/s	1
Bit Error Ratio @25.78Gb/s	BER1			5x10 ⁻⁵		2
Bit Error Ratio @27.95Gb/s	BER2			10 ⁻⁶		3
Bit Error Ratio @28.05Gb/s	BER3			5x10 ⁻⁵		2
Maximum Supported Distances						
Fiber Type						
OM3 MMF	Lmax1			70	m	4
OM4 MMF	Lmax2			100	m	4

Notes:

- 1. Supports 128GFC per T11, 4x28G multimode OTN and 100GBASE-SR4 per IEEE 802.3bm.
- Tested with a 2³¹ 1 PRBS.
 Tested with a 2³¹ 1 PRBS. The BER of 10⁻¹² for the OTU4 (112 Gb/s) application code is required to be met only after forward error correction has been applied. ITU-T G.sup39 defines the pre-FEC BER to be met as 10⁻⁶. The values for receiver sensitivity and optical path penalty measured at the receiver output at a BER of 10⁻⁶ will normally be conservative estimates of the values for receiver sensitivity and path penalty at the BER of 10⁻¹² after the FEC decoder.
- 4. Requires FEC on the host to support maximum distance.

VI. **Environmental Specifications**

Finisar FTLC9551 QSFP28 transceivers have a commercial operating case temperature range of 0°C to +70°C. They can support temporary excursions to case temperatures of -5°C and +75°C without permanent damage (see Section II).

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VII. **Regulatory Compliance**

Finisar FTLC9551 QSFP28 transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50
Laser Eye Safety	TÜV	EN 60825-1:2007 EN 60825-2:2004+A1+A2
Electrical Safety	TÜV	EN 60950
Electrical Safety	UL/CSA	CLASS 3862.07 CLASS 3862.87

Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

VIII. Digital Diagnostics Functions

FTLC9551 QSFP28 transceivers support the I2C-based diagnostics interface specified by the QSFP28 MSA¹. See Finisar Application Note AN-2142 (Title TBD)⁴.

IX. Memory Contents

Per the QSFP28 MSA¹. See Finisar Application Note AN-2142 (Title TBD) ⁴.

XI. Mechanical Specifications

Finisar FTLC9551 QSFP28 transceivers are compatible with the QSFP28 MSA specification ¹.

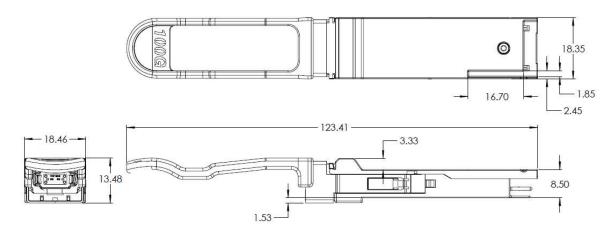


Figure 2. FTLC9551SEPM Mechanical Dimensions.



Figure 3. Product Label

XII. References

- 1. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 (and associated SFF documents referenced therein)
 - i. SFF-8661
 - ii. SFF-8679
 - iii. SFF-8636
 - iv. SFF-8662
 - v. SFF-8663
 - vi. SFF-8672
 - vii. SFF-8683
- 2. 128GFC Specification, per ANSI T.11 FC-PI-6P.
- 3. IEEE 802.3bm, PMD Type 100GBASE-SR4 and CAUI-4.
- 4. Application Note AN-2042 (TBD), Finisar Corporation.
- 5. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 6. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.

For More Information:

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com