imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

December 2015

FUSB302 Programmable USB Type-C Controller w/PD

Features

- Dual-Role Functionality with Autonomous DRP Toggle
- Ability to connect as either a host or a device based on what has been attached.
- Software configurable either as a dedicated host, dedicated device, or dual role.
 - Dedicated devices can operate both on a Type-C receptacle or a Type-C plug with a fixed CC and VCONN channel.
- Full Type-C 1.1 Support. Integrates the following functionality of the CC pin
 - Attach/Detach Detection as Host
 - Current Capability Indication as Host
 - Current Capability Detection as Device
 - Audio Adapter Accessory Mode
 - Debug Accessory Mode
 - Active Cable Detection
- Integrates CCx to VCONN switch with over-current limiting for powering USB3.1 Full Featured cables.
- USB Power Delivery (PD) 2.0, Version 1.1 Support
 - Automatic GoodCRC Packet Response
 - Automatic retries of sending a packet if a GoodCRC is not received
 - Automatic soft reset packet sent with retries if needed
 - Automatic Hard Reset Ordered Set Sent
- Dead Battery Support (SNK Mode Support when No Power Applied)
- Low Power Operation: I_{CC} = 25 µA (Typical)
- Packaged in 9-Ball WLCSP (1.215 mm x 1.260 mm) and 14-lead MLP (2.5 mm x 2.5 mm, 0.5 mm Pitch)

Description

The FUSB302 targets system designers looking to implement a DRP/SRC/SNK USB Type-C connector with low amount of programmability.

The FUSB302 enables the USB Type-C detection including attach, and orientation. The FUSB302 integrates the physical layer of the USB BMC power delivery protocol to allow up to 100 W of power and role swap. The BMC PD block enables full support for alternative interfaces of the Type-C specification.

Applications

- Smartphones
- Tablets
- Laptops
- Notebooks
- Power Adapters
- Cameras
- Dongles

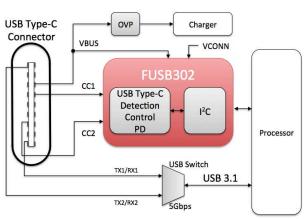
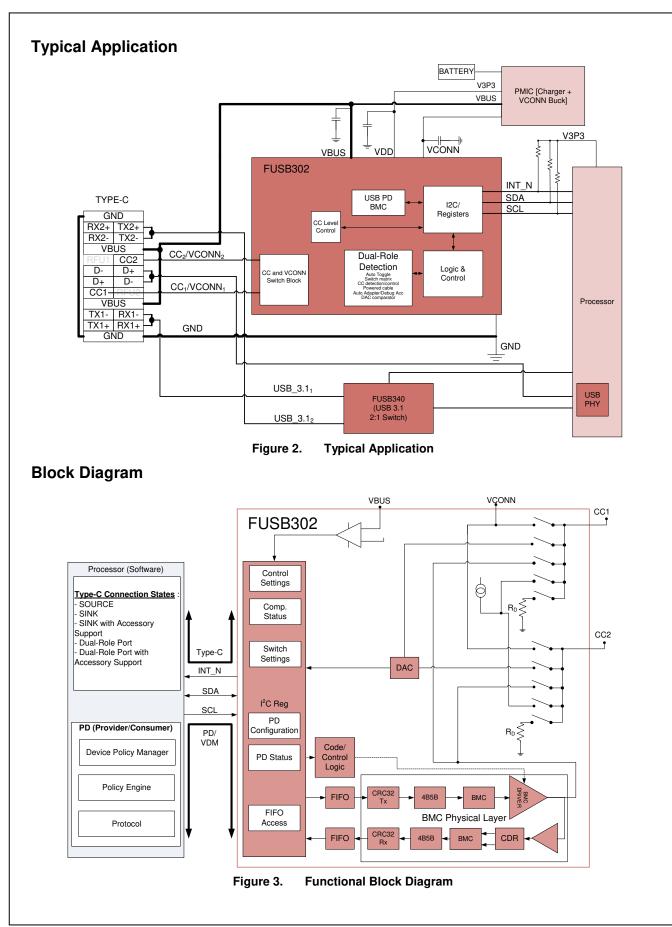
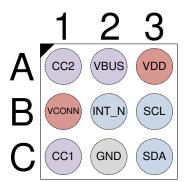



Figure 1. Block Diagram


Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
EUSB3UZUUX		9-Ball Wafer-Level Chip Scale Package (WLCSP), 0.4 mm Pitch	Tape and Reel
FUSB302MPX		14-Lead MLP 2.5 mm x 2.5 mm, 0.5 mm Pitch	

FUSB302 — Programmable USB Type-C Controller w/PD

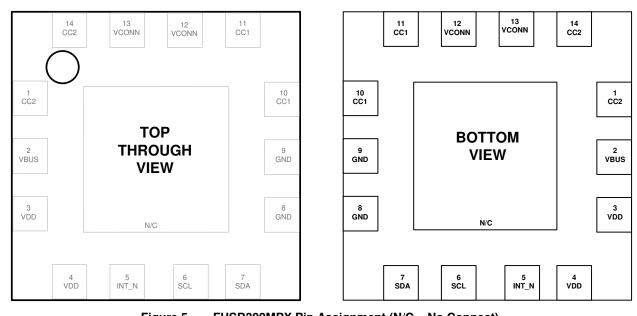
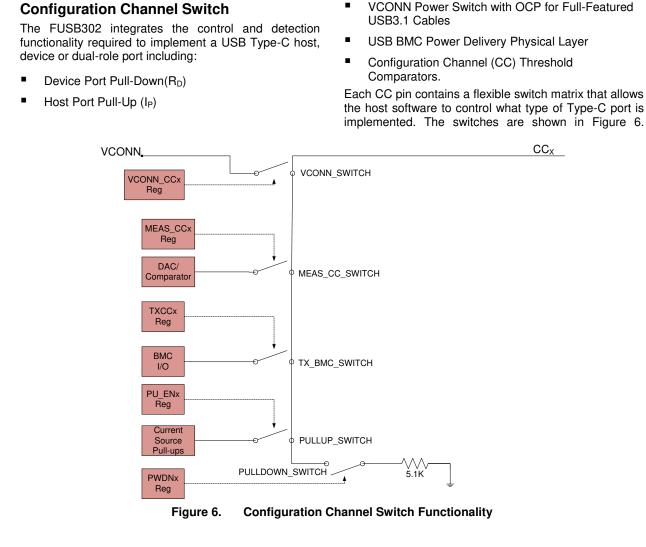

Pin Configuration

Figure 4. FUSB302UCX Pin Assignment (Top Through View)

Pin Map


	Column 1	Column 2	Column 3
Row A	CC2	VBUS	VDD
Row B	VCONN	INT_N	SCL
Row C	CC1	GND	SDA

Pin Descriptions

Name	Туре	Description
USB Type-C Co		-
CC1/CC2	I/O	 Type-C connector Configuration Channel (CC) pins. Initially used to determine when an attach has occurred and what the orientation of the insertion is. Functionality after attach depends on mode of operation detected. Operating as a host: Sets the allowable charging current for VBUS to be sensed by the attached device Used to communicate with devices using USB BMC Power Delivery Used to detect when a detach has occurred Operating as a device: Indicates what the allowable sink current is from the attached hostUsed to communicate with devices using USB BMC Power Delivery
GND	Ground	Ground
VBUS	Input	VBUS input pin for attach and detach detection when operating as an upstream facing port (Device). Expected to be an OVP protected input.
Power Interfac	e	
VDD	Power	Input supply voltage.
VCONN	Power Switch	Regulated input to be switched to correct CC pin as VCONN to power USB3.1 full- featured cables and other accessories
Signal Interfac	e	
SCL	Input	I ² C serial clock signal to be connected to the phone-based I ² C master.
SDA	Open-Drain I/O	I ² C serial data signal to be connected to the phone-based I ² C master
INT_N	Open-Drain Output	Active LOW open drain interrupt output used to prompt the processor to read the $\rm I^2C$ register bits

Type-C Detection

The FUSB302 implements multiple comparators and a programmable DAC that can be used by software to determine the state of the CC and VBUS pins. This status information provides the processor all of the information required to determine attach, detach and charging current configuration of the Type-C port connection.

The FUSB302 has three fixed threshold comparators that match the USB Type-C specification for the three charging current levels that can be detected by a Type-C device. These comparators automatically cause BC_LVL and COMP interrupts to occur when there is a change of state. In addition to the fixed threshold comparators, the host software can use the 6-bit DAC to determine the state of the CC lines more accurately.

The FUSB302 also has a fixed comparator that monitors if VBUS has reached a valid threshold or not. The DAC can be used to measure VBUS up to 20 V which allows the software to confirm that changes to the VBUS line have occurred as expected based on PD or other communication methods to change the charging level.

Detection through Autonomous Device Toggle

The FUSB302 has the capability to do autonomous DRP toggle. In autonomous toggle the FUSB302 internally controls the PDWN1, PDWN2, PU_EN1 and PU_EN2, MEAS_CC1 and MEAS_CC2 and implements a fixed DRP toggle between presenting as a SRC and presenting as a SNK. Alternately, it can present as a SRC or SNK only and poll CC1 and CC2 continuously.

through FC:					
I ² C Registers / Bits	Value				
TOGGLE	1				
PWR	07H				
HOST_CUR0	1				
HOST_CUR1	0				
MEAS_VBUS	0				
VCONN_CC1	0				
VCONN_CC2	0				
Mask Register	0xFE				
Maska Register	0xBF				
Maskb Register (Except I_TOGDONE and I_BC_LVL Interrupt)	0x01				
PWR[3:0]	0x07				
	•				

Table 1. Processor Configures the FUSB302

Notes:

Manual Device Toggle

The FUSB302 has the capability to do manual DRP toggle. In manual toggle the FUSB302 is configurable by the processor software by I2C and setting TOGGLE = 0.

Manual Device Detection and Configuration

A Type-C device must monitor VBUS to determine if it is attached or detached. The FUSB302 provides this information through the VBUSOK interrupt. After the Type-C device knows that a Type-C host has been attached, it needs to determine what type of termination is applied to each CC pin. The software determines if an Ra or Rd termination is present based on the BC_LVL and COMP interrupt and status bits.

Additionally, for Rd terminations, the software can further determine what charging current is allowed by the Type-C host by reading the BC_LVL status bits. This is summarized in Table 2.

Toggle Functionality

When TOGGLE bit (Control2 register) is set the FUSB302 implements a fixed DRP toggle between presenting as a SRC and as a SNK. It can also be configured to present as a SRC only or SNK only and poll CC1 and CC2 continuously. This operation is turned on with TOGGLE=1 and the processor should initially write HOST_CUR1=0, HOST_CUR0=1 (for default current), VCONN_CC1=VCONN_CC2=0, Mask Register=0xFE, Maska register=0xBF, and Maskb register=0x01, and PWR=0x01. The processor should also read the interrupt register to clear them prior to setting the TOGGLE bit.

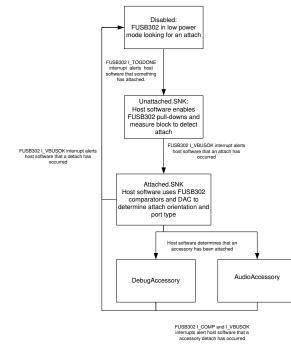
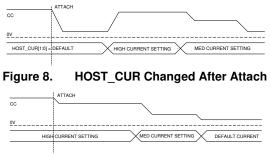

Status Type		Interru	upt Status		Mooning
Status Type	BC_LVL[1:0]	COMP	COMP Setting	VBUSOK	Meaning
	2'b00	NA	NA	1	vRA
	2'b01	NA	NA	1	vRd-Connect and vRd-USB
	2'b10	NA	NA	1	vRd-Connect and vRd-1.5
CC Detection	2'b11	0	6'b11_0100 (2.226 V)	1	vRd-Connect and vRd-3.0
Attach	NA	NA	NA	1	Host Attached, VBUS Valid
Detach	NA	NA	NA	0	Host Detached, VBUS Invalid

Table 2. Device Interrupt Summary

Once it has been determined what the role is of the FUSB302, it returns I_TOGDONE and TOGSS1/2.
 Presence then each perform a final manual abady.

^{2.} Processor then can perform a final manual check through I2C.

The high level software flow diagram for a Type-C device (SNK) is shown in Figure 7.



Manual Host Detection and Configuration

When the FUSB302 is configured as a Type-C host, the software can use the status of the comparators and DAC to determine when a Type-C device has been attached or detached and what termination type has been attached to each CC pin.

Table 3. Host Interrupt Summary	Table 3.	Host Interrupt Summary
---------------------------------	----------	------------------------

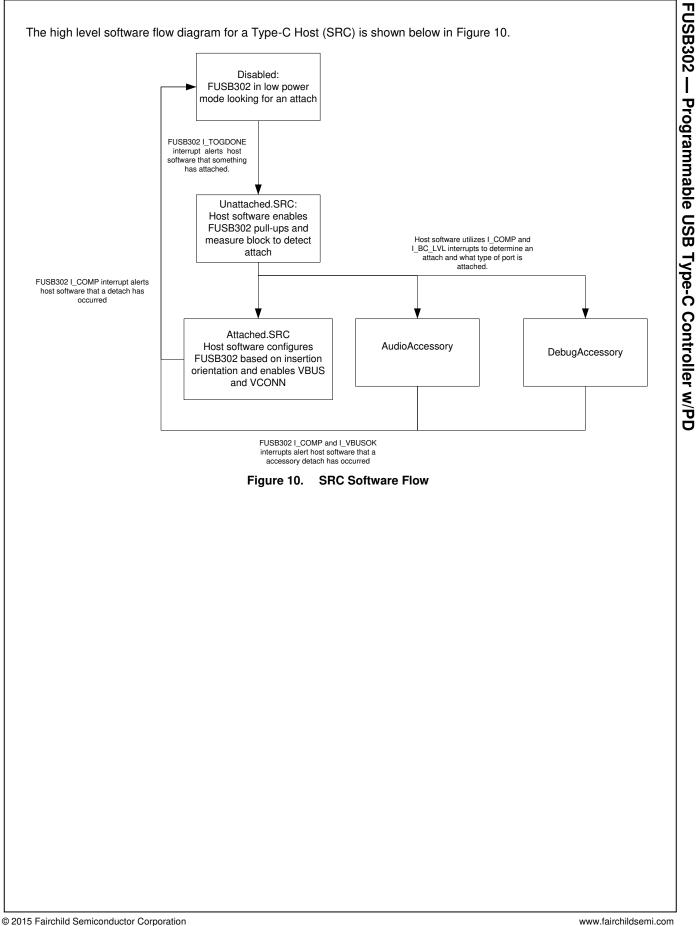
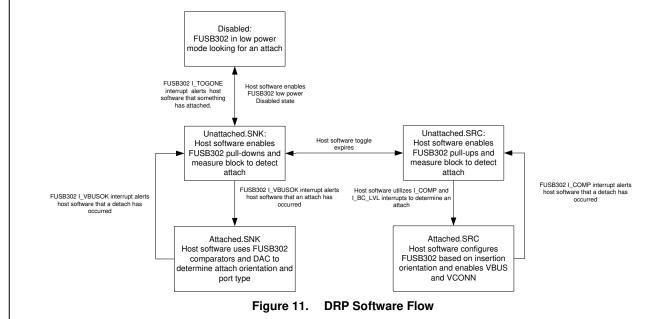

The FUSB302 allows the host software to change the charging current capabilities of the port through the HOST_CUR control bits. If the HOST_CUR bits are changed prior to attach, the FUSB302 automatically indicates the programmed current capabilities are changed after a device is attached. If the current capabilities are changed after a device is attached, the FUSB302 immediately changes the CC line to the programmed capability.

Figure 9. HOST_CUR Changed Prior To Attach

The Type-C specification outlines different attach and detach thresholds for a Type-C host that are based on how much current is supplied to each CC pin. Based on the programmed HOST_CUR setting, the software adjusts the DAC comparator threshold to match the Type-C specification requirements. The BC_LVL comparators can also be used as part of the Ra detection flow. This is summarized in Table 3.


Terminetien		Ir	Attack (Datack		
Termination	HOST_CUR[1:0]	BC_LVL[1:0]	COMP	COMP Setting	Attach/Detach
	2'b01	2'b00	NA	NA	
Ra	2'b10	2'b01	0	6'b00_1001 (0.42 V)	NA
	2'b11	2'b10	0	6'b01_0010 (0.8 V)	
	01601 01610	NA	0	6'b10_0101 (1.6 V)	Attach
Rd	2'b01, 2'b10	NA	1	6'b10_0101 (1.6 V)	Detach
нu		NA	0	6'b11_1101 (2.6 V)	Attach
	2'b11	NA	1	6'b11_1101 (2.6 V)	Detach

Manual Dual-Role Detection and Configuration

The Type-C specification allows ports to be both a device and a host depending on what type of port has attached. This functionality is similar to USB OTG ports with the current USB connectors and is called a dual-

role port. The FUSB302 can be used to implement a dual-role port. A Type-C dual role port toggles between presenting as a Type-C device and a Type-C host. The host software controls the toggle time and configuration of the FUSB302 in each state as shown in Figure 11.

BMC Power Delivery

The Type-C connector allows USB Power Delivery (PD) to be communicated over the connected CC pin between two ports. The communication method is the BMC Power Delivery protocol and is used for many different reasons with the Type-C connector. Possible uses are outlined below.

- Negotiating and controlling charging power levels
- Alternative Interfaces such as MHL, Display Port
- Vendor specific interfaces for use with custom docks or accessories
- Role swap for dual-role ports that want to switch who is the host or device
- Communication with USB3.1 full featured cables

The FUSB302 integrates a thin BMC PD client which includes the BMC physical layer and packet FIFOs (48 bytes for transmit and 80 bytes for receive) which allows packets to be sent and received by the host software through I2C accesses. The FUSB302 allows host software to implement all features of USB BMC PD through writes and reads of the FIFO and control of the FUSB302 physical interface.

The FUSB302 uses tokens to control the transmission of BMC PD packets. These tokens are written to the transmit FIFO and control how the packet is transmitted on the CC pin. The tokens are designed to be flexible and support all aspects of the USB PD specification. The FUSB302 additionally enables control of the BMC transmitter through tokens. The transmitter can be enabled or disabled by specific token writes which allow faster packet processing by burst writing the FIFO with all the information required to transmit a packet.

The FUSB302 receiver stores the received data and the received CRC in the receive FIFO when a valid packet is received on the CC pin. The BMC receiver automatically enables the internal oscillator when activity is sensed on the CC pin and load the FIFO when a packet is received. The I_ACTIVITY and I_CRC_CHK interrupts alert the host software that a valid packet was received.

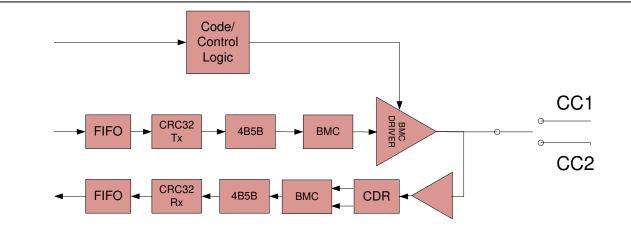


Figure 12. USB BMC Power Delivery Blocks

Power Level Determination

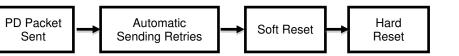
The Type-C specification outlines the order of precedence for power level determination which covers power levels from basic USB2.0 levels to the highest levels of USB PD. The host software is expected to follow the USB Type-C specification for charging current priority based on feedback from the FUSB302 detection, external BC1.2 detection and any USB Power Delivery communication.

The FUSB302 does not integrate BC1.2 charger detection which is assumed available in the USB transceiver or USB charger in the system.

Power Up, Initialization and Reset

When power is first applied through VDD, the FUSB302 is reset and registers are initialized to the default values shown in the register map.

The FUSB302 can be reset through software by programming the SW_RES bit in the RESET register.


If no power applied to VDD then the SRC can recognize the FUSB302 as a SNK.

PD Automatic Receive GoodCRC

The power delivery packets require a GoodCRC acknowledge packet to be sent for each received packet where the calculated CRC is the correct value. This calculation is done by the FUSB302 and triggers the I_CRC_CHK interrupt if the CRC is good. If the AUTO_CRC (Switches1 register bit) is set and AUTO_PRE=0, then the FUSB302 will automatically send the GoodCRC control packet in response to alleviate the local processor from responding quickly to the received packet. If GoodCRC is required for anything beyond SOP, then enable SOP*.

PD Send

The FUSB302 implements part of the PD protocol layer for sending packets in an autonomous fashion.

PD Automatic Sending Retries

If GoodCRC packet is not received and AUTO_RETRY is set, then a retry of the same message that was in the TxFIFO written by the processor is executed within tRetry and that is repeated for NRETRY times.

PD Send Soft Reset

If the correct GoodCRC packet is still not received for all retries then I_RETRYFAIL interrupt is triggered and if AUTO_SOFT_RESET is set, then a Soft Reset packet is created (MessageID is set to 0 and the processor upon servicing I_RETRYFAIL would set the true MessageIDCounter to 0.

If this Soft Reset is sent successfully where a GoodCRC control packet is received with a MessageID=0 then I_TXSENT interrupt occurs.

If not, this Soft Reset packet is retried NRETRIES times (MessageID is always 0 for all retries) if a GoodCRC acknowledge packet is not received with CRCReceiveTimer expiring (tReceive of 1.1 ms max). If all retries fail, then I_SOFTFAIL interrupt is triggered.

PD Send Hard Reset

If all retries of the soft reset packet fail and if AUTO_HARD_RESET is set, then a hard reset ordered set is sent by loading up the TxFIFO with RESET1, RESET1, RESET1, RESET2 and sending a hard reset. Note only one hard reset is sent since the typical retry mechanism doesn't apply. The processor's policy engine firmware is responsible for retrying the hard reset is it doesn't receive the required response.

Figure 13. I ² C Write Example 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K +1 A Read Data K +N-1 NA Single or multi byte read executed from current register location (Single Byte read initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1	Slave Address WR A Register Address K A Write Data A Write Data K+1 A Write Data K+2 A Write Data K+N-1 A Figure 13. I ² C Write Example Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read is initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	ave fully complies wi quirements. This bloc affic up to 1 MHz SCL	ith the I ² C specificant ck is designed for F		The TOGGLE features allow for very low power operation with slow clocking thus may not be fully compliant to the 1 MHz operation. Examples of an I^2C write and real sequence are shown in Figure 13 and Figure 1 respectively.
Figure 13. I ² C Write Example Slave Address 8bits 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Slave Address RD A Read executed from current register location (Single Byte read i initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 P Stop Condition	Figure 13. I ² C Write Example Slave Address 8bits 8bits Slave Address WR A Register Address K A S Slave Address WR A Register Address K A Single or multi byte read executed from current register location (Single Byte read is not specified Initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	8bits	8bits	8bits	
8bits 8bits 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read i initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	8bits 8bits 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA I Single or multi byte read executed from current register location (Single Byte read is nitiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Slave Address WR A	Register Address K	A Write Data A	Write Data K+1 A Write Data K+2 A Write Data K+N-1 A
8bits 8bits 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read i initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	8bits 8bits 8bits 8bits Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA I Single or multi byte read executed from current register location (Single Byte read is nitiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition				
Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA Single or multi byte read executed from current register location (Single Byte read initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Slave Address WR A Register Address K A S Slave Address RD A Read Data K A Read Data K+1 A Read specified Initiated by Master with NA immediately following first data byte) Note: If Register is not specified Maxer will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S S tart Condition NA NOT Acknowledge (SDA High) RD Read =1 P S top Condition From Slave to Master			-	
Single or multi byte read executed from current register location (Single Byte read i initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Single or multi byte read executed from current register location (Single Byte read is Register address to Read specified initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	8bits	8bits	8bits	8bits
Register address to Read specified initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Register address to Read specified initiated by Master with NA immediately following first data byte) Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Slave Address WR A	Register Address K A	S Slave Address	RD A Read Data K A Read Data K+1 A Read Data K+N-1 NA
Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	Y			
bracket is needed From Master to Slave S Start Condition NA NOT Acknowledge (SDA High) RD Read =1 From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	bracket is needed From Master to Slave From Slave to Master A Acknowledge (SDA Low) KA NOT Acknowledge (SDA High) RD Read =1 P Stop Condition P Stop Condition	Register address to	Read specified	initiated	by Master with NA immediately following first data byte)
From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	From Slave to Master A Acknowledge (SDA Low) WR Write=0 P Stop Condition	-		vill begin read from	n current register. In this case only sequence showing in Red
					• • • • •
Figure 14. 1'C Read Example	Figure 14. 1'C Read Example	From Slave to N		-	
				Figure 14. I ⁻ C	CRead Example

FUSB302 — Programmable USB Type-C Controller w/PD

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parame	Parameter			Max.	Unit
Vv _{DD}	Supply Voltage from V _{DD}			-0.5	6.0	V
V _{CC_HDDRP}	CC pins when configured as Host, Device	e or Dual Role Poi	t	-0.5	6.0	V
V _{VBUS}	VBUS Supply Voltage			-0.5	28.0	V
TSTORAGE	Storage Temperature Range			-65	+150	С
TJ	Maximum Junction Temperature				+150	С
TL	Lead Temperature (Soldering, 10 Second	ds)			+260	С
	IEC 61000 4.2 System ESD	Connector Pins	Air Gap	15		kV
	IEC 61000-4-2 System ESD	(VBUS, CCx)	Contact	8		κv
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins		4		kV
	Charged Device Model, JEDEC JESD22-C101	All Pins		1		kV

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

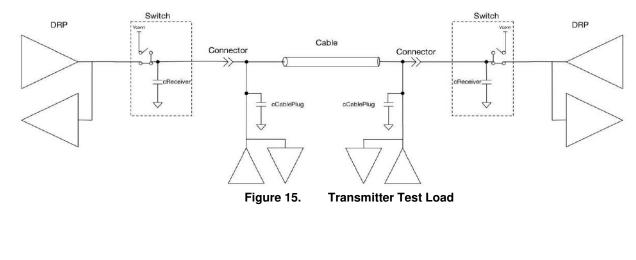
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{VBUS}	VBUS Supply Voltage	4.0	5.0	21.0	V
V _{VDD}	VDD Supply Voltage	2.8 ⁽³⁾	3.3	5.5	V
V _{VCONN}	VCONN Supply Voltage	2.7		5.5	V
I _{VCONN}	VCONN Supply Current			560	mA
T _A	Operating Temperature	-40		+85	С

Note:

3. This is for functional operation only and not the lowest limit for all subsequent electrical specifications below. All electrical parameters have a minimum of 3.0 V operation.

DC and Transient Characteristics

All typical values are at TA=25°C unless otherwise specified.


Baseband PD

Symbol	Parameter		10 to + 0 to +1		Unit
2		Min. Typ.		Max.	
UI	Unit Interval	3.03		3.70	μs
Transmitter		•			
rOutput	TX Output Resistance	21	50	79	Ω
tEndDriveBMC	Time to Cease Driving the Line after the end of the last bit of the Frame			23	μs
t _{HoldLow} BMC	Time to Cease Driving the Line after the final High-to-Low Transition	1			μs
V _{OH}	Logic High Voltage	1.05		1.20	V
V _{OL}	Logic Low Voltage	0		75	mV
t _{StartDrive}	Time before the start of the first bit of the preamble when the			1	μs
t _{RISE_TX}	Rise Time	300			ns
t _{FALL_TX}	Fall Time	300			ns
Receiver					
cReceiver	Receiver Capacitance when Driver isn't Turned On		50		pF
zBmcRx	Receiver Input Impedance	1			MΩ
vSDACstep	BMC Receiver SDAC step size for each code in SDAC[5:0] register		17		mV
vSDAChys	BMC Receiver SDAC hysteresis for each code over the SDAC range (SDAC_HYS=01)		85		mV
tRxFilter	Rx Bandwidth Limiting Filter ⁽⁵⁾	100			ns
nTransitionCount	Transitions count in time window of 12 μs Min. and 20 μs Max. $^{(5)}$	3			edges
tACTIVITY	Time from the last BMC edge $^{\!\!\!(4)}$ to when ACTIVITY bit goes LOW in the STATUS register $^{\!\!\!(5)}$	5		9	μs

Notes:

4. The last BMC edge includes edge when BMC bus is not driven and thus voltage is the result of pull ups/pull downs to if/when it trips the SDAC receiver threshold to cause another BMC edge.

5. Guaranteed by characterization. Not production tested

Symbol		Parameter			Parameter				-40 to +85°C 40 to +125°C		Unit
					Min.	Тур.	Max.	x.			
Rsw_ccx	R _{DSON} for SW1_CC1 and S	W1_CC2	VCONN to	CC1 & CC2		0.4	1.2	Ω			
I _{sw_ccx}	Over-Current Protection (O off over the entire VCONN	CP) limit at voltage rang	which VCON ge. OCPreg=	IN switch shuts 0Fh.	600	800	1000	mA			
tSoftStart	Time taken for the VCONN Current Protection is disable		ırn on during	which Over-		1.5		ms			
I _{80_CCX}	SRC 80 µA CC current (De HOST_CUR0=1	fault) HOST	_CUR1=0,		64	80	96	μA			
I _{180_CCX}	SRC 180 μA CC Current (1 HOST_CUR0=0	.5 A) HOST	_CUR1=1,		166	180	194	μA			
I _{330_CCX}	SRC 330 µA CC Current (3	A) HOST_	CUR1=1, HC)ST_CUR0=1	304	330	356	μA			
VUFPDB	SNK Pull-down Voltage in Dead Battery under all Pull-up SRC Loads						2.18	V			
R _{DEVICE}	Device Pull-down Resistance ⁽⁶⁾				4.6	5.1	5.6	kΩ			
zOPEN	CC Resistance for Disabled State				126			kΩ			
WAKElow	Wake threshold for CC pin SRC or SNK LOW value. Assumes bandgap and wake circuit turned on ie PWR[0]=1					0.25		V			
WAKEhigh	Wake threshold for CC pin SRC or SNK HIGH value. Assumes bandgap and wake circuit turned on ie PWR[0]=1					1.45		V			
vBC_LVLhys	Hysteresis on the Ra and R	d Compara	tors			20		mV			
	BC=2'b00 CC Pin Thresholds, Assumes PWR=4'h7 BC=2'b01		BC=2'b00	0.15	0.20	0.25	V				
vBC_LVL			BC=2'b01	0.61	0.66	0.70	V				
		BC=			1.16	1.23	1.31	V			
vMDACstepCC	Measure block MDAC step register	size for eac	ch code in M	DAC[5:0]		42		mV			
vMDACstepVBUS	Measure block MDAC step register for VBUS measure		ch code in M	DAC[5:0]		420		mV			
vVBUSthr	VBUS threshold at which I_ Assumes measure block or			ggered.			4.0	V			
tTOG1	When TOGGLE=1, time at PU_EN1=PU_EN2=0 and F present externally as a SNM	WDN1=PD	WN2=1 sele		30	45	60	ms			
tTOG2	When TOGGLE=1, time at or PU_EN2=1 and PWDN1 externally as a SRC in the I	=PDWN2=() selected to		20	30	40	ms			
		TOG_SAV	/E_PWR2:1=	=00		0					
tDIS	Disable time after a full toggle (tTOG1+tTOG2)		'E_PWR2:1=			40		ms			
1010	cycle so as to save power	TOG_SAV	'E_PWR2:1=	:10		80					
		TOG_SAV	'E_PWR2:1=	:11		160					
Tshut	Temp. for Vconn Switch Off					145		°C			
Thys		Temp. Hysteresis for Vconn Switch Turn On				10		°C			

Note:

6. R_{DEVICE} minimum and maximum specifications are only guaranteed when power is applied.

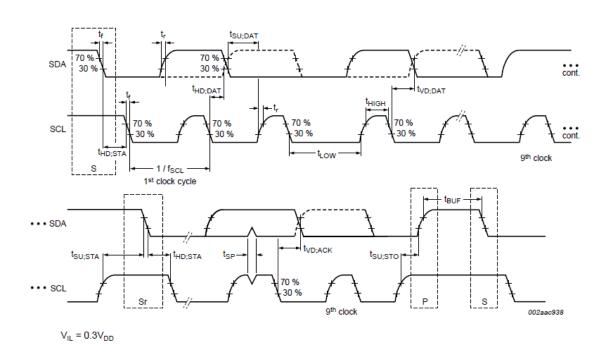
Current (Current Consumption								
Symbol	Parameter	V _{DD} (V)	Conditions		T _A =-40 to +85°C T _J =-40 to +125°C				
-				Min.	Тур.	Max.			
ldisable	Disabled Current	3.0 to 5.5	Nothing Attached, No I ² C Transactions		0.37	5.00	μA		
Itog	Unattached (standby) toggle current	3.0 to 5.5	Nothing attached, TOGGLE=1, PWR[3:0]=1h, WAKE_EN=0, TOG_SAVE_PWR2:1=01		25	40	μA		
lpd_stby_ meas	BMC PD Standby Current	3.0 to 5.5	Device Attached, BMC PD Active But Not Sending or Receiving Anything, PWR[3:0]=7h,		40		μΑ		

USB PD Specific Parameters

Symbol	Parameter	$T_A = -4$ $T_J = -4$	Unit		
_		Min.	Тур.	Max.	
tHardReset	If a Soft Reset message fails, a Hard Reset is sent after tHardReset of CRCReceiveTimer expiring			5	ms
tHardReset Complete	If the FUSB302 cannot send a Hard Reset within tHardResetComplete time because of a busy line, then a I_HARDFAIL interrupt is triggered			5	ms
tReceive	This is the value for which the CRCReceiveTimer expires. The CRCReceiveTimer is started upon the last bit of the EOP of the transmitted packet	0.9		1.1	ms
tRetry	Once the CRCReceiveTimer expires, a retry packet has to be sent out within tRetry time. This time is hard to separate externally from tReceive since they both happen sequentially with no visible difference in the CC output			75	μs
tSoftReset	If a GoodCRC packet is not received within tReceive for NRETRIES then a Soft Reset packet is sent within tSoftReset time.			5	ms
tTransmit	From receiving a packet, we have to send a GoodCRC in response within tTransmit time. It is measured from the last bit of the EOP of the received packet to the first bit sent of the preamble of the GoodCRC packet			195	μs

Symbol	Parameter	V _{DD} (V)	Vpp (V) Conditions		T _A =-40 to +85°C T _J =-40 to +125°C			
2		,		Min.	Тур.	Max.	1	
Host Inter	face Pins(INT_N)	•		•		•		
VOLINTN	Output Low Voltage	3.0 to 5.5	I _{OL} =4 mA			0.4	V	
T _{INT_Mask}	Time from global interrupt mask bit cleared to when INT_N goes LOW	3.0 to 5.5		50			μs	
I ² C Interfa	ce Pins – Standard, Fast, or Fa	ast Mode Pl	us Speed Mode (SDA,	SCL) ⁽⁷⁾				
V _{ILI2C}	Low-Level Input Voltage	3.0 to 5.5				0.51	V	
V _{IHI2C}	High-Level Input Voltage	3.0 to 5.5		1.32			V	
V_{HYS}	Hysteresis of Schmitt Trigger Inputs	3.0 to 5.5		94			mV	
I _{I2C}	Input Current of SDA and SCL Pins	3.0 to 5.5	Input Voltage 0.26 V to 2.0 V	-10		10	μA	
I _{CCTI2C}	VDD Current when SDA or SCL is HIGH	3.0 to 5.5	Input Voltage 1.8 V	-10		10	μA	
Volsda	Low-Level Output Voltage (Open-Drain)	3.0 to 5.5	I _{OL} =2 mA	0		0.35	V	
I _{OLSDA}	Low-Level Output Current (Open-Drain)	3.0 to 5.5	V _{OLSDA} =0.4 V	20			mA	
Cı	Capacitance for Each I/O Pin	3.0 to 5.5			5		pF	

Note:


7. I^2C pull up voltage is required to be between 1.71 V and V_{DD}.

т
USB
SB302
<u> </u>
Pro
ğr
Imr
nak
able USB -
USB
ВT
ď
e-C C
ő
ont
iroll
ler
×
PD

	Devenuetev	Fast Mode Plus				
Symbol	Parameter –	Min.	Max.	Unit		
f _{SCL}	I2C_SCL Clock Frequency	0	1000	kHz		
t _{hd;sta}	Hold Time (Repeated) START Condition	0.26		μs		
t _{LOW}	Low Period of I2C_SCL Clock	0.5		μs		
t _{ніGH}	High Period of I2C_SCL Clock	0.26		μs		
t _{su;sta}	Set-up Time for Repeated START Condition	0.26		μs		
t _{hd;dat}	Data Hold Time	0		μs		
t _{su;dat}	Data Set-up Time	50		ns		
t _r	Rise Time of I2C_SDA and I2C_SCL Signals ⁽⁸⁾		120	ns		
t _f	Fall Time of I2C_SDA and I2C_SCL Signals ⁽⁸⁾	6	120	ns		
t _{SU;STO}	Set-up Time for STOP Condition	0.26		μs		
t _{BUF}	Bus-Free Time between STOP and START Conditions ⁽⁸⁾	0.5		μs		
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns		
Cb	Capacitive Load for each Bus Line ⁽⁸⁾		550	pF		
t _{vd-dat}	Data Valid Time for Data from SCL LOW to SDA HIGH or LOW Output ⁽⁸⁾	0	0.45	μs		
t _{VD-ACK}	Data Valid Time for acknowledge from SCL LOW to SDA HIGH or LOW Output ⁽⁸⁾	0	0.45	μs		
V _{nL}	Noise Margin at the LOW Level ⁽⁸⁾	0.2		V		
V_{nH}	Noise Margin at the HIGH Level ⁽⁸⁾	0.4		V		

Note:

8. Guaranteed by characterization. Not production tested.

 $V_{IH} = 0.7 V_{DD}$

Table 4. I^2C^{TM} Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	0	1	0	R/W
		•	I		I		I	•	

ddress	Register Name	Туре	Rst Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x01	Device ID	R	8x		Versio	n ID[3:0]			Revisio	n ID[3:0]	
0x02	Switches0	R/W	03	PU_EN2	PU_EN1	VCONN _CC2	VCONN_CC1	MEAS_CC2	MEAS_CC1	PDWN2	PDWN1
0x03	Switches1	R/W	20	POWERROLE	SPECREV1	SPECREV0	DATAROLE		AUTO_CRC	TXCC2	TXCC1
0x04	Measure	R/W	31		MEAS_VBUS	MDAC5	MDAC4	MDAC3	MDAC2	MDAC1	MDAC0
0x05	Slice	R/W	60	SDAC_HYS1	SDAC_HYS2	SDAC5	SDAC4	SDAC3	SDAC2	SDAC1	SDAC0
0x06	Control0	R/W/C	24		TX_FLUSH	INT_MASK		HOST_CUR1	HOST_CUR0	AUTO_PRE	TX_START
0x07	Control1	R/W/C	00		ENSOP2DB	ENSOP1DB	BIST_MODE2		RX_FLUSH	ENSOP2	ENSOP1
0x08	Control2	R/W	02	TOG_SAVE_PW R2	TOG_SAVE_P WR1	TOG_RD_ONLY		WAKE_EN	MOE	DE[1:0]	TOGGLE
0x09	Control3	R/W	06		SEND_HARD_R ESET		AUTO_HARDR ESET	AUTO_SOFTRES ET	N_RET	RIES[1:0]	AUTO_RETF
0x0A	Mask1	R/W	00	M_VBUSOK	M_ACTIVITY	M_COMP_CHNG	M_CRC_CHK	M_ALERT	M_WAKE	M_COLLISION	M_BC_LVL
0x0B	Power	R/W	01	1				PWR3	PWR2	PWR1	PWR0
0x0C	Reset	W/C	00							PD_RESET	SW_RES
0x0D	OCPreg	R/W	0F					OCP_RANGE	OCP_CUR2	OCP_CUR1	OCP_CUR
0x0E	Maska	R/W	00	M_OCP_TEMP	M_TOGDONE	M_SOFTFAIL	M_RETRYFAIL	M_HARDSENT	M_TXSENT	M_SOFTRST	M_HARDRS
0x0F	Maskb	R/W	00								M_GCRCSE
0x10	Undocumented Control4	R/W	00								TOG_USRC_ IT
0x3C	Status0a	R	00			SOFTFAIL	RETRYFAIL	POWER3	POWER2	SOFTRST	HARDRST
0x3D	Status1a	R	00			TOGSS3	TOGSS2	TOGSS1	RXSOP2DB	RXSOP1DB	RXSOP
0x3E	Interrupta	R/C	00	I_OCP_TEMP	I_TOGDONE	I_SOFTFAIL	I_RETRYFAIL	I_HARDSENT	I_TXSENT	I_SOFTRST	I_HARDRS
0x3F	Interruptb	R/C	00								I_GCRCSE
0x40	Status0	R	00	VBUSOK	ACTIVITY	COMP	CRC_CHK	ALERT	WAKE	BC_LVL1	BC_LVL0
0x41	Status1	R	28	RXSOP2	RXSOP1	RX_EMPTY	RX_FULL	TX_EMPTY	TX_FULL	OVRTEMP	OCP
0x42	Interrupt	R/C	00	I_VBUSOK	I_ACTIVITY	I_COMP_CHNG	I_CRC_CHK	I_ALERT	I_WAKE	I_COLLISION	I_BC_LVL
0x43	FIFOs	R/W ⁽¹¹⁾	00			Write to TX FIFO or r	ead from RX FIFO re	epeatedly without addr	ess auto increment		

(0)(10)

Notes:

9. Do not use registers that are blank.
10. Values read from undefined register bits are not defined and invalid. Do not write to undefined registers.
11. FIFO register is serially read/written without auto address increment.

	5. Device ID ss: 01h			
Type:		1		
Bit #	Name	R/W/C	Size (Bits	
7:4	Version ID	R	4	Device version ID by Trim or etc. A_[Revision ID]: 1000 (e.g. A_revA) B_[Revision ID]: 1001 C_[Revision ID]: 1010 etc
3:0	Revision ID	R	4	Revision History of each version [Version ID]_revA: 0000 (e.g. A_revA) [Version ID]_revB: 0001 [Version ID]_revC: 0010 etc
Table	6. Switches0			
Reset	ss: 02h Value: 0x0000_00 Read/Write)11		
Bit #	Name	R/W/C	Size (Bits	s) Description
7	PU_EN2	R/W	1	1: Apply host pull up current to CC2 pin.
6	PU_EN1	R/W	1	1: Apply host pull up current to CC1 pin.
5	VCONN_CC2	R/W	1	1: Turn on the VCONN current to CC2 pin.
4	VCONN_CC1	R/W	1	1: Turn on the VCONN current to CC1 pin.
3	MEAS_CC2	R/W	1	1: Use the measure block to monitor or measure the voltage on CC2.
2	MEAS_CC1	R/W	1	1: Use the measure block to monitor or measure the voltage on CC1.
1	PDWN2	R/W	1	1: Device pull down on CC2. 0: no pull down.
0	PDWN1	R/W	1	1: Device pull down on CC2. 0: no pull down.1: Device pull down on CC1. 0: no pull down.
0 Table Addres Reset Type:	PDWN1	R/W		
0 Table Addres Reset	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write	R/W	1	1: Device pull down on CC1. 0: no pull down. Description
0 Table Addres Reset Type:	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write	R/W	1	1: Device pull down on CC1. 0: no pull down. Description Bit used for constructing the GoodCRC acknowledge packet. This
0 Table Addres Reset Type: Bit #	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write Name	R/W	1 Size (Bits)	Device pull down on CC1. 0: no pull down. Description Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Power Role bit in the message header if an SOP packet is received 1: Source if SOP 0: Sink if SOP
0 Table Addres Reset Type: Bit #	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write Name POWERROLE SPECREV1:	R/W 8/W/C R/W	Size (Bits)	Device pull down on CC1. 0: no pull down. Description Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Power Role bit in the message header if an SOP packet is received 1: Source if SOP 0: Sink if SOP Bit used for constructing the GoodCRC acknowledge packet. These bits correspond to the Specification Revision bits in the message header 00: Revision 1.0 01: Revision 2.0
0 Table Addres Reset Type: Bit # 7 6:5	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write Name POWERROLE SPECREV1: SPECREV1: SPECREV0	R/W 8/W/C R/W R/W	1 Size (Bits) 1 2	Device pull down on CC1. 0: no pull down. I: Device pull down on CC1. 0: no pull down. Description Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Power Role bit in the message header if an SOP packet is received 1: Source if SOP 0: Sink if SOP Bit used for constructing the GoodCRC acknowledge packet. These bits correspond to the Specification Revision bits in the message header 00: Revision 1.0 01: Revision 2.0 10, 11: Do Not Use Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Data Role bit in the message header. For SOP: 1: SRC
0 Table Addres Reset Type: Bit # 7 6:5	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write Name POWERROLE SPECREV1: SPECREV1: SPECREV0 DATAROLE	R/W R/W/C R/W R/W	1 Size (Bits) 1 2 1	Description Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Power Role bit in the message header if an SOP packet is received 1: Source if SOP 0: Sink if SOP Bit used for constructing the GoodCRC acknowledge packet. These bits correspond to the Specification Revision bits in the message header 00: Revision 1.0 01: Revision 2.0 10, 11: Do Not Use Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Data Role bit in the message header. For SOP: 1: SRC 0: SNK Do Not Use 1: Starts the transmitter automatically when a message with a good
0 Table Addres Reset Type: Bit # 7 6:5 4 3	PDWN1 7. Switches1 ss: 03h Value: 0x0010_00 Read/Write Name POWERROLE SPECREV1: SPECREV0 DATAROLE Reserved	R/W R/W/C R/W R/W R/W	1 Size (Bits) 1 2 1 1	Description Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Power Role bit in the message header if an SOP packet is received 1: Source if SOP 0: Sink if SOP Bit used for constructing the GoodCRC acknowledge packet. These bits correspond to the Specification Revision bits in the message header 00: Revision 1.0 01: Revision 2.0 10, 11: Do Not Use Bit used for constructing the GoodCRC acknowledge packet. This bit corresponds to the Port Data Role bit in the message header. For SOP: 1: SRC 0: SNK Do Not Use 1: Starts the transmitter automatically when a message with a good CRC is received and automatically sends a GoodCRC acknowledge packet back to the relevant SOP*

FUSB302 — Programmable USB Type-C Controller w/PD

Table 8. Measure

Address: 04h Reset Value: 0x0011_0001 Type: Read/Write

Bit #	Name	R/W/C	Size (Bits)		Descript	tion														
7	Reserved	N/A	1	Do Not Use																
6	MEAS_VBUS	R/W	1	MEAS_CC* bits.	S with the MDAC/co	nt is controlled by omparator. This requ	ires													
			,	voltage which is o	compared to the me selected by MEAS_	is equivalent to 42 r asured CC voltage. CC2, or MEAS_CC1	The													
											MDAC[5:0]	MEAS_VBUS=0	MEAS_VBUS=1	Unit						
				00_0000	0.042	0.420	v													
5:0	MDAC[5:0]	R/W	6	00_0001	0.084	0.840	V													
					11_0000	2.058	20.58	V												
					11_0011	2.184	21.84	V												
																			11_1110	2.646
				11_1111	>2.688	26.88	V													

Table 9. Slice

Address: 05h

Reset Value: 0x0110_0000

Type: Read/Write

Bit #	Name	R/W/ C	Size (Bits)	Description
7:6	SDAC_HYS[1:0]	R/W	2	Adds hysteresis where there are now two thresholds, the <i>lower</i> <i>threshold which is always the value programmed by</i> <i>SDAC[5:0]</i> and the higher threshold that is: 11: 255 mV hysteresis: higher threshold = (SDAC value + 20hex) 10 = 170 mV hysteresis: higher threshold = (SDAC value + Ahex) 01 = 85 mV hysteresis: higher threshold = (SDAC value + 5) 00 = No hysteresis: higher threshold = SDAC value
5:0	SDAC[5:0]	R/W	6	BMC Slicer DAC data input. Allows for a programmable threshold so as to meet the BMC receive mask under all noise conditions.

Table 10. Control0

Address: 06h Reset Value: 0x0010_0100

Type: (see column below)

Bit #	Name	R/W/C	Size (Bits)	Description
7	Reserved	N/A	1	Do Not Use
6	TX_FLUSH	W/C	1	1: Self clearing bit to flush the content of the transmit FIFO.
5	INT_MASK	R/W	1	1: Mask all interrupts. 0: Interrupts to host are enabled.
4	Reserved	N/A	1	Do Not Use
3:2	HOST_CUR[1:0]	R/W	2	 Controls the host pull up current enabled by PU_EN[2:1]: No current 01: 80 μA – Default USB power. 10: 180 μA – Medium Current Mode: 1.5 A 11: 330 μA – High Current Mode: 3 A
1	AUTO_PRE	R/W	1	1: Starts the transmitter automatically when a message with a good CRC is received. This allows the software to take as much as 300 μ S to respond after the I_CRC_CHK interrupt is received. Before starting the transmitter, an internal timer waits for approximately 170 μ S before executing the transmit start and preamble. 0: Feature disabled.
0	TX_START	W/C	1	1: Start transmitter using the data in the transmit FIFO. Preamble is started first. During the preamble period the transmit data can start to be written to the transmit FIFO. Self clearing.

Table 11. Control1

Address: 07h

Reset Value: 0x0000_0000

Type: (see column below)

Bit #	Name	R/W/C	Size (Bits)	Description
7	Reserved	N/A	1	Do Not Use
6	ENSOP2DB	R/W	1	1: Enable SOP"_DEBUG (SOP double prime debug) packets 0: Ignore SOP"_DEBUG (SOP double prime debug) packets
5	ENSOP1DB	R/W	1	1: Enable SOP [·] _DEBUG (SOP prime debug) packets 0: Ignore SOP [·] _DEBUG (SOP prime debug) packets
4	BIST_MODE2	R/W	1	1: Sent BIST Mode 01s pattern for testing
3	Reserved	N/A	1	Do Not Use
2	RX_FLUSH	W/C	1	1: Self clearing bit to flush the content of the receive FIFO.
1	ENSOP2	R/W	1	1: Enable SOP"(SOP double prime) packets 0: Ignore SOP"(SOP double prime) packets
0	ENSOP1	R/W	1	1: Enable SOP'(SOP prime) packets 0: Ignore SOP'(SOP prime) packets

Table 12. Control2

Address: 08h Reset Value: 0x0000_0010

Type: (see column below)

Bit #	Name	R/W/C	Size (Bits)	Description
7:6	TOG_SAVE_PWR2: TOG_SAVE_PWR1	N/A	2	 00: Don't go into the DISABLE state after one cycle of toggle 01: Wait between toggle cycles for t_{DIS} time of 40 ms 10: Wait between toggle cycles for t_{DIS} time of 80 ms 11: Wait between toggle cycles for t_{DIS} time of 160 ms
5	TOG_RD_ONLY	R/W	1	 When TOGGLE=1 only Rd values will cause the TOGGLE state machine to stop toggling and trigger the I_TOGGLE interrupt. When TOGGLE=1, Rd and Ra values will cause the TOGGLE state machine to stop toggling.
4	Reserved	N/A	1	Do Not Use
3	WAKE_EN	R/W	1	1: Enable Wake Detection functionality if the power state is correct 0: Disable Wake Detection functionality
2:1	MODE	R/W	2	 11: Enable SRC polling functionality if TOGGLE=1 10: Enable SNK polling functionality if TOGGLE=1 01: Enable DRP polling functionality if TOGGLE=1 00: Do Not Use
0	TOGGLE	R/W	1	1: Enable DRP, SNK or SRC Toggle autonomous functionality 0: Disable DRP, SNK and SRC Toggle functionality

Table 13. Control3

Address: 09h

Reset Value: 0x0000_0110

Type: (see column below)

Bit #	Name	R/W/C	Size (Bits)	Description
7	Reserved	N/A	1	Do Not Use
6	SEND_HARD_RESET	W/C	1	1: Send a hard reset packet (highest priority) 0: Don't send a soft reset packet
5	Reserved	N/A	1	Do Not Use
4	AUTO_HARDRESET	R/W	1	1: Enable automatic hard reset packet if soft reset fail 0: Disable automatic hard reset packet if soft reset fail
3	AUTO_SOFTRESET	R/W	1	1: Enable automatic soft reset packet if retries fail 0: Disable automatic soft reset packet if retries fail
2:1	N_RETRIES[1:0]	R/W	2	 11: Three retries of packet (four total packets sent) 10: Two retries of packet (three total packets sent) 01: One retry of packet (two total packets sent) 00: No retries (similar to disabling auto retry)
0	AUTO_RETRY	R/W	1	1: Enable automatic packet retries if GoodCRC is not received 0: Disable automatic packet retries if GoodCRC not received

Table 14. Mask

Address: 0Ah Reset Value: 0x0000_0000

Type: Read/Write

Bit #	Name	R/W/C	Size (Bits)	Description
7	M_VBUSOK	R/W	1	1: Mask I_VBUSOK interrupt bit. 0: Do not mask.
6	M_ACTIVITY	R/W	1	1: Mask interrupt for a transition in CC bus activity. 0: Do not mask.
5	M_COMP_CHNG	R/W	1	1: Mask I_COMP_CHNG interrupt for change is the value of COMP, the measure comparator. 0: Do not mask.
4	M_CRC_CHK	R/W	1	1: Mask interrupt from CRC_CHK bit. 0: Do not mask.
3	M_ALERT	R/W	1	1: Mask the I_ALERT interrupt bit. 0: Do not mask.
2	M_WAKE	R/W	1	1: Mask the I_WAKE interrupt bit. 0: Do not mask.
1	M_COLLISION	R/W	1	1: Mask the I_COLLISION interrupt bit. 0: Do not mask.
0	M_BC_LVL	R/W	1	1: Mask a change in host requested current level. 0: Do not mask.

Table 15. Power

Address: 0Bh Reset Value: 0x0000_0001

Type: Read/Write

Bit #	Name	R/W/C	Size (Bits)	Description
7:4	Reserved	N/A	4	Do Not Use
3:0	PWR[3:0]	R/W	4	Power enables: PWR[0]: Bandgap and wake circuit. PWR[1]: Receiver powered and current references for Measure block PWR[2]: Measure block powered. PWR[3]: Enable internal oscillator.

Table 16. Reset

Address: 0Ch

Reset Value: 0x0000_0000

Type: Write/Clear

Bit #	Name	R/W/C	Size (Bits)	Description
7:2	Reserved	N/A	6	Do Not Use
1	PD_RESET	W/C	1	1: Reset just the PD logic for both the PD transmitter and receiver.
0	SW_RES	W/C	1	1: Reset the FUSB302 including the I2C registers to their default values.