imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

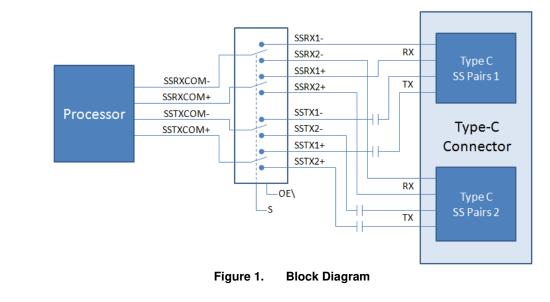
August 2015

FUSB340 USB 3.1 SuperSpeed 10 Gbps Switch

Features

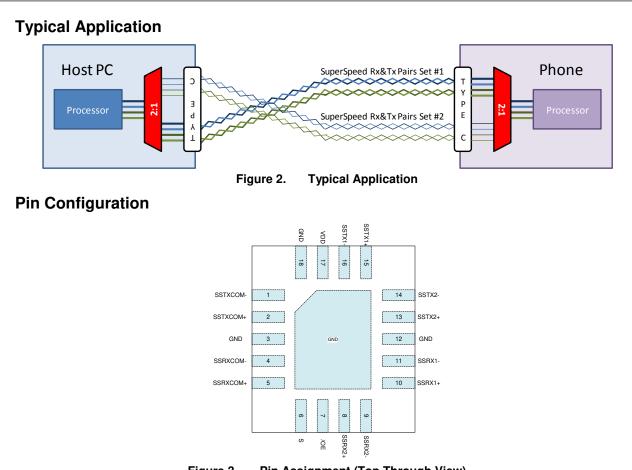
- 10 GHz Typical Bandwidth
- USB 3.1 SuperSpeed 5 Gbps and 10 Gbps Switch
- -1.0 dB Typical Insertion Loss at 2.5 GHz
- Low Active Power of 12 µA Typical
- Low Shutdown Power of < 1 µA Max.</p>
- 2 kV HBM ESD Protection
- Small Packaging, 18 Lead TMLP
- Wide V_{DD} Operating Range, 1.5 V-5.0 V

Applications


- Smartphones
- Tablets
- Notebooks

Description

The FUSB340 is a 2:1 data switch for USB SuperSpeed Gen1 and Gen2, 5 Gbps and 10 Gbps data. It is targeted at the mobile device market and for use in Type-C applications where a reversible cable requires a switch.


The FUSB340 data switch offers superior performance various high speed data transmission protocols:

- USB 3.1 SuperSpeed (Gen 2), 10 Gbps
- PCI Express, Gen 3
- SATA
- Fibre Channel
- Display Port 1.3

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	
FUSB340TMX	-40 to 85°C	18-Lead, Quad, Ultra-ultrathin Molded Leadless Package (TMLP), 2.0 mm x 2.8 mm x 0.375 mm	Tape and Reel	

Pin Descriptions

Pin #	Name	Туре	Description		
1	SSTXCOM-	SW	SuperSpeed TX- Common		
2	SSTXCOM+	SW	SuperSpeed TX+ Common		
3	GND	GND	Ground (connected to die attach pad)		
4	SSRXCOM-	SW	SuperSpeed RX- Common		
5	SSRXCOM+	SW	SuperSpeed RX+ Common		
6	S	Input	Switch Select (0=SW1, 1=SW2)		
7	/OE	Input	Output Enable (0=Switches Enabled, 1=Switches Disabled)		
8	SSRX2+	SW	SuperSpeed RX2+		
9	SSRX2-	SW	SuperSpeed RX2-		
10	SSRX1+	SW	SuperSpeed RX1+		
11	SSRX1-	SW	SuperSpeed RX1-		
12	GND	GND	Ground (connected to die attach pad)		
13	SSTX2+	SW	SuperSpeed TX2+		
14	SSTX2-	SW	SuperSpeed TX2-		
15	SSTX1+	SW	SuperSpeed TX1+		
16	SSTX1-	SW	SuperSpeed TX1-		
17	V _{DD}	VDD	Device Power		
18	GND	GND	Ground		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{DD}	Supply Voltage	-0.5	6.0	V	
V _{CNTRL}	DC Input Voltage (S, /OE) ⁽¹⁾	-0.5	V _{DD}	V	
V _{SW}	DC Switch I/O Voltage ^(1,2)	-0.3	2.1	V	
I _{IK}	DC Input Diode Current	-50		mA	
I _{sw}	DC Switch Current		25	mA	
T _{STG}	Storage Temperature	-65	+150	°C	
MSL	Moisture Sensitivity Level (JEDEC J-STD-020A)		1		
	Human Body Model, JEDEC: JESD22-A114	All Pins	2		
ESD	IEC 61000-2-4, Level 4, for Switch Pins	Contact	8		kV
230	Air		15		ΓV
	Charged Device Model, JESD22-C101	1			

Notes:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

2. V_{SW} refers to analog data switch paths.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{DD}	Supply Voltage	1.5	5.0	V
tramp(VDD)	Power Supply Slew Rate	100	1000	μs/V
V _{CNTRL}	Control Input Voltage (S, /OE) ⁽³⁾	0	5.0	V
V _{SW}	Switch I/O Voltage (Both SSUSB Switch Paths)	0	2.0	V
T _A	Operating Temperature	-40	+85	°C

Note:

3. The control inputs must be held HIGH or LOW; they must not float.

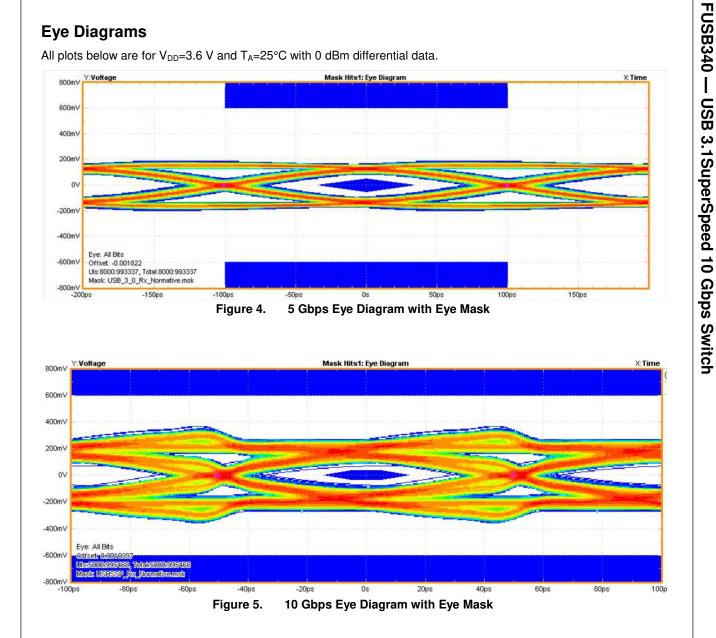
DC and Transient Characteristics

All typical values are at TA=25°C unless otherwise specified.

Symbol	Parameter	Condition	V _{DD} (V)	T _A = -40⁰C to +85⁰C			11
				Min.	Тур.	Max.	Unit
VIK	Clamp Diode Voltage S, /OE	I _{IN} =-18 mA	1.5	-1.2		-0.6	V
I _{IK}	Clamp Diode Current (Switch Pins)	V _{IN} =-0.3 V	0			18	μA
		S, /OE	1.5	1.30			V
VIH	Control Input Voltage High	S, /OE	3.6	1.4			V
		S, /OE	5.0	1.5			V
		S, /OE	1.5			0.4	V
VIL	Control Input Voltage Low	S, /OE	3.6			0.4	V
		S, /OE	5.0			0.4	V
I _{IN}	Control Input Leakage	V_{SW} = -0.6 to 2.0 V V_{CNTRL} =0 to V_{DD}	5.0	-500		500	nA
loz	Off-State Leakage for Open Data Paths	$V_{SW}\text{=}~0.0 \leq \text{DATA} \leq 2.0~\text{V}$	5.0	-0.5		0.5	μA
I _{CL}	On-State Leakage for Closed Data Paths ⁽⁴⁾	$V_{SW}\text{=}~0.0 \leq \text{DATA} \leq 2.0~\text{V}$	5.0	-0.5		0.5	μA
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V _{SW} = 0 V or 2.0 V	0	-500		500	nA
R _{ON}	Switch On Resistance	V_{SW} = 0 V, I_{ON} =-8 mA	1.5		5.4	8.0	Ω
ΔR_{ON}	Difference in R _{ON} Between Positive-Negative	V _{SW} = 0 V, I _{ON} =-8 mA	1.5		0.1		Ω
R _{ONF}	Flatness for R _{ON}	$\label{eq:V_SW} \begin{array}{l} V_{SW} \!\!\!\!= 0 \leq \! DATA \leq \! 2.0 \ V, \\ I_{ON} \!\!\!\!= \! 8 \ mA \end{array}$	1.5		0.9		Ω
Icc	Quiescent Supply Current	$V_{/OE}$ =0, V_{SEL} =0 or V_{DD} , I_OUT=0	5.0		12	30	μA
I _{CCZ}	Quiescent Supply Current (High Impedance)		5.0			1	μA
I _{CCT}	Increase in Quiescent Supply Current per V _{CNTRL}	V_{SEL} or $V_{/OE}$ =1.5 V	5.0		5	15	μA

Note:

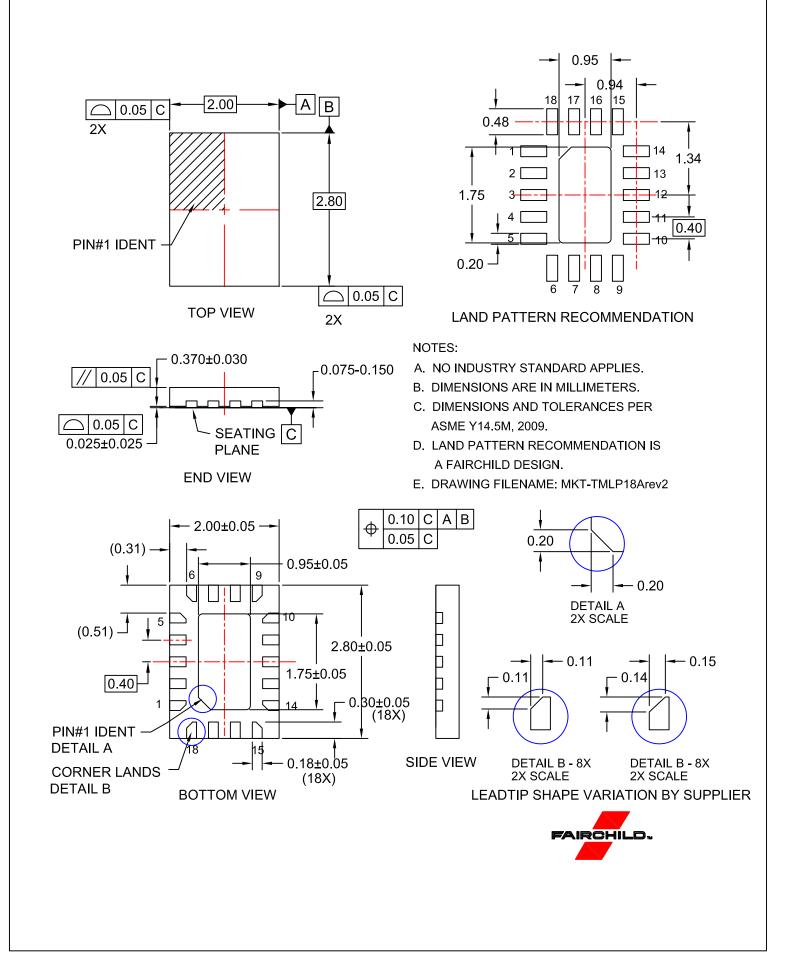
4. For this test, the data switch is closed with the respective switch pin floating.


AC Electrical Characteristics

All typical value are for V_{DD} =3.6 V and $T_{\text{A}}\text{=}25^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Condition	V _{DD} (V)	T _A = -40°C to +85°C			Unit
				Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Time, S to Output	$ \begin{array}{l} R_{L} = 50 \ \Omega, \ C_{L} = 0 \ pF, \ V_{SW} = 0 \ V, \\ V_{SW} = 0.6 \ V \end{array} $	1.5 to 5.0 V		350	600	ns
t _{OFF}	Turn-Off Time, S to Output	$ \begin{array}{l} R_{L} = 50 \ \Omega, \ C_{L} = 0 \ pF, \ V_{SW} = 0 \ V, \\ V_{SW} = 3.3 \ V \end{array} $	1.5 to 5.0 V		125	300	ns
t _{ZHM,ZL}	Enable Time, /OE to Output	$R_L=50 \Omega, C_L=0pF, V_{SW}=0.6 V$	1.5 to 5.0 V		60	150	μs
t _{lzm,hz}	Disable Time, /OE to Output	R_L =50 Ω , C_L =0 pF, V_{SW} =0.6 V	1.5 to 5.0 V		35	240	ns
t _{PD}	Propagation Delay ⁽⁵⁾	$C_L=, C_L=0 \text{ pF}, R_L=50 \Omega,$	1.5 to 5.0 V		0.25		ns
t _{BBM}	Break-Before-Make ⁽⁵⁾		1.5 to 5.0 V	100		350	ns
	Differential Off Isolation ⁽⁵⁾	$V_S=0dBm$, $R_L=50 \Omega$, f=2.5 GHz	3.6 V		-28		dB
DOIRR		$V_S=0dBm$, $R_L=50 \Omega$, f=5.0 GHz			-25		UD
	Differential Channel Crosstalk ⁽⁵⁾	$V_S=0dBm$, R=50 Ω , f=2.5 GHz	3.6 V		-44		dB
SDDNEXT		V _S =0dBm, R=50 Ω, f=5.0 GHz			-40		uв
DIL	Differential Incertion Leas ⁽⁵⁾	V_{IN} =0dBm, f=2.5 GHz, R _L =50 Ω , C _L =0 pF	3.6 V		-1.0		dB
DIL	(All Data Paths)				-1.8		
BW	Differential -3 dB Bandwidth ⁽⁵⁾	V_{IN} =1 V_{pk-pk} , R_L =50 Ω , C_L =0 pF, (Both Data Paths)	3.6 V		10		GHz
$t_{\text{SK}(\text{P})}$	Skew of Opposite Transitions of the Same Output ⁽⁵⁾	$R_{\text{PU}}{=}50~\Omega$ to $V_{\text{DD}},~C_{\text{L}}{=}0~\text{pF}$	3.6 V		6		ps
CIN	Control Pin Input Capacitance ⁽⁵⁾	V _{DD} =0 V, f=1 MHz			2.7		pF
C _{ON}	On Capacitance (5)	V _{DD} =3.3 V, f=2.5 GHz			0.5		pF
COFF	Off Capacitance ⁽⁵⁾	V _{DD} =3.3 V, f=2.5 GHz			0.4		pF

Note:


5. Guaranteed by characterization.

The table below pertains to the UMLP Package drawing on the following page.

Product-Specific Dimensions

Product	А	В		
FUSB340TMX	2.00 mm	2.80 mm		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC