: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FX-100 serkes

FIBER SENSORS
$\begin{array}{r} \text { LASER } \\ \text { SENSORS } \end{array}$
PHOTOELECTRIC SENSORS
$\begin{array}{r} \text { MICRO } \\ \text { PHOTOELECTRIC } \\ \text { SENSORS } \end{array}$
AREA SENSORS
LIGHT CURTAINS SAFETY COMPONENTS
PRESSURE FLOW SENSORS
INDUCTIVE PROXIMITY SENSORS
PARTICULAR USE SENSORS
SENSOR OPTIONS
$\begin{array}{r} \text { SIMPLE } \\ \text { WIRE-SAVING } \\ \text { UNITS } \end{array}$
WIRE-SAVING SYSTEMS
MEASUREMENT SENSORS
STATIC ELECTRICITY PREVENTION DEVICES
LASER MARKERS

HUMAN MACHINE
INTERFACES

ENERGY CONSUMPTION
VISUALZATON
COMPONENTS

FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS

Saving-space with a width of 9 mm 0.354 in

Very slim body at only 9 mm 0.354 in . This is much thinner than existing fiber sensors. This makes a very large difference when using many units, even if the difference of one unit is small.

Improved stability over long terms

Utilizes "Four-chemical emitting element" for light emission. The light emission is guaranteed to be stable over long periods of time.

Simple operation due to clear configuration system

Continued to use the configuration system of digital pressure sensor DP-100 series, which has received high popularity since its release. We have separated the settings into three levels: RUN mode, SET mode, and PRO mode, making operation simpler and easier.

Quick code input function

RUN mode
Simply imputing the default setting "code (number)" will enable sensor settings. Even if the settings are accidentally changed, imputing the code will restore the default settings.
Confirmation can be carried out smoothly via telephone by simply quoting numbers. This can be of great assistance when dealing with foreign country customers.

FIBER
FIBER
SENSORS
LASER
SENSORS
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
LIGHT CURTAINS I
SAFETY
COMPONENTS
PRESSURE /
FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVING
WIRE-S
WIRE-SAVING
SYSTEMS
MEASUREMEN
SENSORS
STATIC ELECTRICITY
PREVENTION
DEVICES
LASER
MARKERS
PLC

HUMAN MACHINE
INTERFACES
ENERGY CONSUMPTION
VISUALIZATION
COMPONENTS
FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS

Selection Guide
Fibers
Fiber Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7I
FX-301-F

Refer to "Quick setting function" and "Code setting function" in "PRECAUTIONS FOR PROPER USE" for details.
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA

SENSORS
LIGHT CURTAINS I

SAFETY
PRESSURE /
FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVING
UNITS
WIRE-SAVING
SYSTEMS
MEASUREMENT SENSORS
STATIC ELECTRICITY
PREVENTION PREVENTION
DEVICES

LASER
MARKERS
PLC

HUMAN MACHINE INTERFACES
ENERGY CONSUMPTION
VISUALIZATION
COMPONENTS
FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS

Selection

Teaching with ON / OFF keys
 SET mode

Simply press the ON key when an object is present, and OFF when it is not, and teaching is completed. There is no need to consider difference between Light-ON and Dark-ON.

<Setting example>

Thru-beam type / Retroreflective type

Teaching even without an object

- Limit teaching function

Threshold value can be set by performing teaching only when an object is absent (when the incident light amount is stable). This is useful when there are other objects in the background also when defecting a minute objects. Teaching can also be carried out using external input.

Threshold value follow-up cycle setting function

PRO mode
This function performs automatic setting to threshold value by checking the incident light intensity at desired intervals in order to follow the changes in the light amount resulting from changes in the environment over long periods (such as dust). Contributes to reduction in maintenance hours.

[^0]
Resolves variation in incident light intensity display GETA function
 PRO mode

Even when performing the same sensing operation, there may be variances in the digital values of the fiber amp. There is no problem with the sensor itself, but the operator may find it troubling.
Given value can be corrected with the GETA function, so the apparent variation can be eliminated and the creation of operation manuals can proceed smoothly.

Variations in the amount of light received

Unify at 500 using the GETA function

Example of current incident light intensity display of ' 500 ' is adjusted to '淠碞'

Emission amount setting function

Emission amount can be reduced in order to achieve stable detection when the receiving light level is saturated, such as detection at close range and detection of transparent or minute objects. Previously, the emission amount level was only one, but from production in December 2007, four level setting (three level + auto setting) has become available. This function brings easier settings than before.

Emission frequency setting mode

SET mode
Mutual interference is prevented for max. 3 units for standard type FX-101■ and max. 4 units in case of long sensing range type $\mathrm{FX}-102$.
During setting of interference prevention, emitter and output indicator both flash, so it is convenient to confirm which fiber is in the setting process at a glance. Emitter flashes even when an amplifier is not installed close together.

* When the emission frequency is changed, a response time is also changed.
 at the same frequency.

External input setting mode

 PRO modeExternal input can be selected from emission halt, limit teaching / full-auto teaching / 2 -level teaching, ECO or emission amount test. Threshold value set at each teaching is also memorized.

* 2-level teaching, emission amount test and threshold value storing setting are available in amplifiers manufactured after December 2007.

Digital display inversion setting PRO mode
The viewing orientation of the digital display can be inverted in accordance with the setting direction of the amplifier.

Alert function
PRO mode
When the amount light received approaches the threshold value, the display can be made to blink in order to alert the operator.
<When using at a shift amount of 20% and a threshold value of 1,000 >
The amount of light received ranges from about 900 to 1,100 when the digital indicator flashes.

Setting copy function to reduce man-hours and human error
 PRO mode

By connecting a fiber sensor to the master fiber sensor, the master sensor settings can be copied along with data communications. When the same settings are input to several units, trouble from setting errors can be prevented, also changes to the work order will be small when equipment design is changed.
<Wiring to copy settings>

These settings can be copied

Threshold value, output operation, timer operation, timer emission amount, shift, external input, threshold valuestoring, ECO inverting digital display, and threshold value margin

Without mounting bracket

Selectable either mounting on DIN rail or direct mounting with through hole.
Direct mounting brings stability even on a movable parts or installation of a single unit.

Avallable trom standard type or long sensing range type

Standard type and long sensing range type are available which has various response time and sensing range. The model best meet application needs can be selected.

Model No.	Type	Sensing range $($ FT-43)	Response time
FX-101	Standard type	$350 \mathrm{~mm} \mathrm{13.780}$ in	Max. $250 \mu \mathrm{~s}$
FX-102	Long sensing range type	$970 \mathrm{~mm} \mathrm{38.189} \mathrm{in}$	Max. 2.5 ms

Power consumption saving with ECO mode

When there is no key operations in approximately 20 seconds, digital display turns off and power consumption can be reduced to 600 mW or less $(720 \mathrm{~mW}$ in normal mode).

FIBER
FIBER
SENSORS
LASER
SENSORS
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
LIGHT CURTAINS /
SAFETY
COMPONENTS
PRESSURE /
PRESS
FLOW
FLOW
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVIN
WIRE-SAVING
SYSTEMS

MEASUREMEN

SENSORS
STATIC ELECTRICITY
PREVENTION
DEVICES
LASER
MARKERS

PLC

HUMAN MACHINE

 INTERFACESENERGY CONSUMPTION

FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS

Selection Guide
Fibers
Fiber Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7I
FX-301-F

ORDER GUIDE

Amplifiers

Type	Appearance	Model No.	Emitting element	Output

Accessory

- CN-14A-C2
(Connector attached) cable 2 m 6.562 ft
* Only include cable set type

- FC-FX-1 (Protection cover)
* It have been attached from the production at July, 2011.

Notes: 1) The connector attached cable $2 \mathrm{~m} 6.562 \mathrm{ft} \mathbf{C N}-14 \mathrm{~A}-\mathbf{C 2}$ is supplied with the amplifier.
2) Make sure to use the optional connector attached cable $\mathbf{C N}-14 \mathrm{~A}(-\mathrm{R})-\mathrm{C}_{\square}$ or the connector $\mathbf{C N}-14 \mathrm{~A}$, or a connector manufactured by J.S.T. Mfg. Co., Ltd. (contact: SPHD-001T-P0.5, housing: PAP-04V-S)
3) Make sure to use the optional M8 connector attached cable CN-24A-C \square.

OPTIONS

Designation	Model No.	Description	
Connector attached cable	CN-14A-C1	1 m 3.281 ft	$0.2 \mathrm{~mm}^{2} 4$-core cabtyre cable with connector on one end Cable outer diameter: $\varnothing 3.7 \mathrm{~mm} \varnothing 0.146$ in
	CN-14A-C2 (Note)	2 m 6.562 ft	
	CN-14A-C3	3 m 9.843 ft	
	CN-14A-C5	5 m 16.404 ft	
Connector attached cable (Flexible type)	CN-14A-R-C1	1 m 3.281 ft	
	CN-14A-R-C2	2 m 6.562 ft	
	CN-14A-R-C3	3 m 9.843 ft	
	CN-14A-R-C5	5 m 16.404 ft	
M8 connector attached cable	CN-24A-C2	2 m 6.562 ft	For M8 plug-in connector type The connector on one end Cable outer diameter: $\varnothing 4 \mathrm{~mm} ø 0.157$ in
	CN-24A-C5	5 m 16.404 ft	
Connector	CN-14A	Set of 10 housings and 40 contacts	
Amplifier mounting bracket	MS-DIN-4	Mounting bracket for amplifier	
End plates	MS-DIN-E Two pcs. per set	When it moves depending on the way it is installed on a DIN rail, these end plates ensure that all amplifiers are mounted together in a secure and fully connected manner.	

M8 connector attached cable

- CN-24A-C \square

Amplifier mounting bracket

Connector attached cable

- CN-14A(-R)-C \square

Connector

- CN-14A

LIST OF FIBERS

Thru-beam type (one pair set)
Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)		Type / Ambient temperature	Fiber cable length 8×: Free-cut	Dimensions
	Standard type FX-101ם	Long sensing range type FX-102			
FT-140	14,000 551.180	19,600 771.652 (Note 2)	Threaded, M14, Long sensing range, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$	\% 10 mm 32.808 ft	P. 51
FT-30	1355.315	40015.748	Super quality, Threaded, M3, -55 to $+80{ }^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 51
FT-31	1305.118	34013.386	$\begin{gathered} \text { Threaded, M3, } \\ -55 \text { to }+80^{\circ} \mathrm{C}-67 \text { to } 176{ }^{\circ} \mathrm{F} \end{gathered}$	${ }_{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 51
FT-31S	1305.118	34013.386	Sleeve, Threaded, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 51
FT-31W	803.150	2409.449	$\begin{gathered} \text { Threaded, M3, } \\ -40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to } 140^{\circ} \mathrm{F} \end{gathered}$		P. 51
FT-40	32012.598	87034.252	Super quality, Threaded, M4, -55 to $+80{ }^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 51
FT-42	30011.811	80031.496	$\begin{gathered} \text { Threaded, M4, } \\ -55 \text { to }+80^{\circ} \mathrm{C}-67 \text { to } 176^{\circ} \mathrm{F} \end{gathered}$	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 51
FT-42S	30011.811	80031.496	Sleeve, Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 51
FT-42W	26010.236	72028.346	$\begin{aligned} & \text { Threaded, M4, } \\ & -40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to } 140^{\circ} \mathrm{F} \end{aligned}$		P. 51
FT-43	35013.780	97038.189	Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 51
FT-45X	34013.386	92036.220	$\begin{gathered} \text { Threaded, M4, } \\ -55 \text { to }+80^{\circ} \mathrm{C}-67 \text { to } 176^{\circ} \mathrm{F} \end{gathered}$	1 m 3.281 ft	P. 52
FT-A11	1,900 74.803	3,600 141.732 (Note 2)	Wide beam, -40 to $+70^{\circ} \mathrm{C}-40$ to $158{ }^{\circ} \mathrm{F}$	$\%^{\circ} 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 52
FT-A11W	1,700 66.929	3,400 133.858	Wide beam, -40 to $+55^{\circ} \mathrm{C}-40$ to $131^{\circ} \mathrm{F}$		P. 52
FT-A32	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	Wide beam, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 52
FT-A32W	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	Wide beam, -40 to $+55^{\circ} \mathrm{C}-40$ to $131^{\circ} \mathrm{F}$		P. 52
FT-AL05	2509.843	66025.984	Wide beam, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 52
FT-E13	60.236	190.748	Cylindrical, Ultra-small dia., ø3 0.118, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$	\% 1 m 3.281 ft	P. 52
FT-E23	220.866	803.150	Cylindrical, Ultra-small dia., ø3 0.118, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$		P. 52
FT-H13-FM2	2509.843	70027.559	$\begin{gathered} \text { Heat-resistant, } \\ -60 \text { to }+130^{\circ} \mathrm{C}-76 \text { to } 266^{\circ} \mathrm{F} \\ \hline \end{gathered}$	${ }^{\circ} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 52
FT-H20-J20-S (Note 3)	1355.315	42016.535	Heat-resistant (joint), -60 to $+200{ }^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	\% 200 mm 7.874 in (Note 4)	P. 53
FT-H20-J30-S (Note 3)	1355.315	42016.535	Heat-resistant (joint), -60 to $+200^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	\% 8300 mm 11.811 in (Note 4)	P. 53
FT-H20-J50-S (Note 3)	1355.315	42016.535	Heat-resistant (joint), -60 to $+200^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	\% 500 mm 19.685 in (Note 4)	P. 53
FT-H20-M1	2108.268	54021.260	Heat-resistant, $-60 \text { to }+200^{\circ} \mathrm{C}-76 \text { to } 392^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 53
FT-H20-VJ50-S (Note 3)	1505.906	50019.685	Heat-resistant (joint), -60 to $+200^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	\% 500 mm 19.685 in (Note 4)	P. 53
FT-H20-VJ80-S (Note 3)	1505.906	50019.685	Heat-resistant (joint), -60 to $+200^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	$8 \times 800 \mathrm{~mm} 31.496$ in (Note 4)	P. 53
FT-H20W-M1	1003.937	30011.811	Heat-resistant, -60 to $+200^{\circ} \mathrm{C}-76$ to $392^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 53
FT-H30-M1V-S (Note 5)	1104.331	28011.024	Vacuum-resistant, -30 to $+300^{\circ} \mathrm{C}-22$ to $572^{\circ} \mathrm{F}$		P. 53
FT-H35-M2	1706.693	49019.291	Heat-resistant, $-60 \text { to }+350^{\circ} \mathrm{C}-76 \text { to } 572^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 53
FT-H35-M2S6	1706.693	49019.291	$\begin{gathered} \text { Heat-resistant, } \\ -60 \text { to }+350^{\circ} \mathrm{C}-76 \text { to } 572^{\circ} \mathrm{F} \end{gathered}$		P. 53
FT-HL80Y	99038.976	2,340 92.126	Chemical-resistant, Metal-free, -40 to $+115^{\circ} \mathrm{C}-76$ to $239^{\circ} \mathrm{F}$	\% ${ }^{\text {¢ }} 2 \mathrm{~m} 6.562 \mathrm{ft}$ (Note 6)	P. 53

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range.
3) Heat-resistant joint fibers and ordinary-temperature fibers (FT-42) are sold as a set.
4) This is the fiber length (fixed length) for heat-resistant fibers. The ordinary-temperature fibers are free-cut to 2 m 6.562 ft .
5) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8).
6) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

LIST OF FIBERS

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)		Type / Ambient temperature	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101	Long sensing range type FX-102			
FT-KS40	2,200 86.614	3,600 141.732 (Note 2)	Narrow Beam, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 54
FT-KV26	1355.315	56022.047	Narrow Beam, Side-view, -40 to $+60{ }^{\circ} \mathrm{C}-40$ to $140{ }^{\circ} \mathrm{F}$	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 54
FT-KV40	2,200 86.614	3,600 141.732 (Note 2)	Narrow Beam, Side-view, -40 to $+60{ }^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 54
FT-KV40W	2,200 86.614	3,600 141.732 (Note 2)	Narrow Beam, Side-view, -40 to $+60{ }^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	¢< 2 m 6.562 ft	P. 54
FT-L80Y	1,100 43.307	2,600 102.362	Chemical-resistant, Metal-free, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$	\% ${ }^{\text {c }}$ 2 m 6.562 ft (Note 3)	P. 54
FT-R31	1003.937	34013.386	Square head, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 54
FT-R40	27010.630	74029.134	Threaded, M4, Elbow, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 54
FT-R41W	2509.843	71027.953	Square head, M4, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 54
FT-R42W	51020.079	2,000 78.740	Square head, M4, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 54
FT-R43	2108.268	64025.197	Square head, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 54
FT-R44Y	2108.268	64025.197	Oil-resistant, Square head, M4, Cable-protection type, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 55
FT-R60Y	69027.165	1,890 74.409	Oil-resistant, Square head, M6, Full-protection type, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 55
FT-S11	401.575	903.543	Cylindrical, $\boldsymbol{\phi} 10.039,-55$ to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	500 mm 19.685 in	P. 55
FT-S20	1355.315	40015.748	Super quality, Cylindrical, $\phi 1.50 .059$, -55 to $+80^{\circ} \mathrm{C}-67$ to $176^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 55
FT-S21	1305.118	34013.386	Cylindrical, $\phi 1.50 .059,-55$ to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562	P. 55
FT-S21W	803.150	2409.449	Cylindrical, $\phi 1.50 .059,-40$ to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 55
FT-S30	32012.598	87034.252	Super quality, Cylindrical, $\phi 30.118$, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 55
FT-S31W	26010.236	72028.346	Cylindrical, $\phi 30.118,-40$ to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 55
FT-S32	1,100 43.307	3,000 118.110	Cylindrical, $\phi 2.50 .098,-40$ to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$		P. 55
FT-V23	1606.299	40015.748	Sleeve, Cylindrical, Side-view, $\$ 20.079$, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 55
FT-V24W	351.378	903.543	Sleeve, Cylindrical, Side-view, $\phi 20.079$, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	\% $\times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 56
FT-V25	953.740	26010.236	Sleeve, Cylindrical, Side-view, $\phi 20.079$, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 56
FT-V30	1807.087	48018.898	Sleeve, Cylindrical, Side-view, $\phi 2.50 .098$, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 56
FT-V40	1,000 39.370	3,100 122.047	Cylindrical, Side-view, $\phi 40.157$, $-40 \text { to }+60^{\circ} \mathrm{C}-40 \text { to } 140^{\circ} \mathrm{F}$		P. 56
FT-V80Y	34013.386	80031.496	Chemical-resistant, Metal-free -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$	\% ${ }^{\text {c }}$ 2 m6.562 ft (Note 3)	P. 56
FT-Z20HBW	1003.937	32012.598	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	¢ 1 m 3281 ft	P. 56
FT-Z20W	28011.024	73028.740	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 56
FT-Z30	71027.953	2,300 90.551	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 56
FT-Z30E	1,200 47.244	3,200 125.984	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 56
FT-Z30EW	1,400 55.118	2,600 102.362	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 57
FT-Z30H	1,400 55.118	3,200 125.984	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 57
FT-Z30HW	1,400 55.118	3,200 125.984	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	${ }_{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 57
FT-Z30W	54021.260	1,800 70.866	Flat, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 57
FT-Z40HBW	26010.236	72028.346	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 57
FT-Z40W	41016.142	1,200 47.244	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 57
FT-Z802Y	52020.472	3,100 122.047	Chemical-resistant, 0 to $+60^{\circ} \mathrm{C} 32$ to $140^{\circ} \mathrm{F}$		P. 57

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range.
3) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

LIST OF FIBERS

Retroreflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type / Ambient temperature	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101ם	Long sensing range type FX-102]			
FR-KZ22E	15 to 2000.591 to 7.874	15 to 3600.591 to 14.173	Wafer mapping, -40 to $+60^{\circ} \mathrm{C}-40$ to $140{ }^{\circ} \mathrm{F}$	$\%^{\circ} 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 58
FR-KZ50E	20 to 2000.787 to 7.874	20 to 3500.787 to 13.780	Narrow Beam, Side sensing, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 58
FR-KZ50H	20 to 2000.787 to 7.874	20 to 3500.787 to 13.780	Narrow Beam, Top sensing, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 58
FR-Z50HW	100 to 5503.937 to 21.654	100 to 8303.937 to 32.677	With polarizing filter, -25 to $+55^{\circ} \mathrm{C}-13$ to $131^{\circ} \mathrm{F}$		P. 58

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
The sensing range of FR-KZ22E is specified for the attached reflector. The sensing range of FR-KZ50E and FR-KZ50H is specified for the attached reflector RF-003. The sensing range of FR-Z50HW is specified for the RF-13.
2) The sensing range is the possible setting range for the attached reflector. The fiber can detect an object less than setting range for the reflector. However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2) / Description		Type / Ambient temperature	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101ם	Long sensing range type FX-102			
FD-30	451.772	1556.102	Super quality, Threaded, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 59
FD-31	351.378	1405.512	Threaded, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 59
FD-31W	150.591	602.362	Threaded, M3, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	¢ 2 m 6.562 ft	P. 59
FD-32G	702.756	1907.480	Threaded, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 59
FD-32GX	752.953	2108.268	Threaded, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	\% ${ }^{\text {P }} 1 \mathrm{~m} 3.281 \mathrm{ft} \mathrm{(Note} \mathrm{3)}$	P. 59
FD-40	451.772	1556.102	Super quality, Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 59
FD-41	351.378	1405.512	Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 59
FD-41S	351.378	1405.512	Sleeve, Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 59
FD-41SW	150.591	602.362	Sleeve, Threaded, M4, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 59
FD-41W	803.150	2309.055	Threaded, M4, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	2 m .562 t	P. 59
FD-42G	702.756	1907.480	Threaded, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 60
FD-42GW	451.772	1405.512	Threaded, M4, -40 to $+60^{\circ} \mathrm{C}-40$ to $140{ }^{\circ} \mathrm{F}$		P. 60
FD-60	1405.512	42016.535	Super quality, Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 60
FD-61	1204.724	41016.142	Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 60
FD-61G	1204.724	35013.780	Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 60
FD-61S	1305.118	36014.173	Sleeve, Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	$8 \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 60
FD-61W	803.150	2309.055	Threaded, M6, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 60
FD-62	1706.693	45017.717	Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 60
FD-64X	752.953	2208.661	Threaded, M6, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 61
FD-A16	1204.724	2409.449	Wide beam, -40 to $+60^{\circ} \mathrm{C}-40$ to $140{ }^{\circ} \mathrm{F}$	¢ 2 m6.562ft	P. 61
FD-AL11	1003.937	28511.220	Array, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 61
FD-E13	50.197	150.591	Cylindrical, Ultra-small dia,., $81.50 .0559,-40$ to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 61
FD-E23	200.787	702.756	Cylindrical, Ultra-small dia, $030.1188,-40$ to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$		P. 61
FD-EG30	200.787	702.756	Threaded, M3, Ultra-small dia., -40 to $+70^{\circ} \mathrm{C}-40$ to $158{ }^{\circ} \mathrm{F}$	500 mm 19.685 in	P. 61
FD-EG30S	200.787	702.756	Sleeve, Threaded, Ultra-mall dia,. $\mathrm{M3},-40$ to $+70^{\circ} \mathrm{C}-40$ to $1588^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 62
FD-EG31	70.276	250.984	Threaded, M3, Ultra-small dia., -20 to $+60^{\circ} \mathrm{C}-4$ to $140^{\circ} \mathrm{F}$	500 mm 19.685 in	P. 62
FD-F4	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} \varnothing 0.236$ to ه1.024 in transparent pipe [PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in] Liquid absent: Beam received, Liquid present: Beam interrupted		Pipe-mountable type, Liquid level sensing, -40 to $+100^{\circ} \mathrm{C}-40$ to $212^{\circ} \mathrm{F}$	\% 2 m 6.562 ft	P. 62
FD-F41	Applicable pipe diameter: Outer $\varnothing 1.024$ in transparent pipe [PVC (vinyl chloride), fluorine resin glass, wall thickness 1 to 3 mm Liquid absent: Beam received, L	dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} ø 0.236$ to sin, polycarbonate, acrylic, 0.039 to 0.118 in] iquid present: Beam interrupted	Pipe-mountable type, Liquid level sensing, $-40 \text { to }+100^{\circ} \mathrm{C}-40 \text { to } 212^{\circ} \mathrm{F}$		P. 62

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The sensing range is specified for white non-glossy paper.
3) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

LIST OF FIBERS

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2) / Description		Type / Ambient temperature	Fiber cable lengthFree-cut	Dimensions
	Standard type FX-101ם	Long sensing range type FX-102			
FD-F41Y (Note 3)	$\emptyset 4 \mathrm{~mm}$ ø 0.157 in Protective tube: Fluorine resin, len Liquid surface not contacted: Beam contacted: Beam interrupted	ngth 500 mm 19.685 in (cuttable) m received, Liquid surface	Contact type, Liquid level sensing, Metal-free, $-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to } 158^{\circ} \mathrm{F}$	$\%^{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 62
FD-F8Y	$\emptyset 6 \mathrm{~mm} ø 0.236$ in Protective tube: Fluorine resin, length Liquid surface not contacted: Beam r Beam interrupted	$1,000 \mathrm{~mm} 39.370$ in (not cuttable) received, Liquid surface contacted:	Contact type, Liquid level sensing, $-40 \text { to }+125^{\circ} \mathrm{C}-40 \text { to } 257^{\circ} \mathrm{F}$	8 \% 2 m $6.562 \mathrm{ft} \mathrm{(Note} \mathrm{6)}$	P. 62
FD-FA93	Applicable pipe diameter: Outer dia transparent pipe (When used with the tying bands: \varnothing [PFA (fluorine resin), including trans Liquid absent: Beam received, Liquid	. $\varnothing 8 \mathrm{~mm} \varnothing 0.315$ in or more $\varnothing 8$ to $ø 80 \mathrm{~mm} ø 0.315$ to $ø 3.150 \mathrm{in})$ slucent] uid present: Beam interrupted	Pipe-mountable type, Liquid sensing, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$	${ }^{8} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 62
FD-H13-FM2	1003.937	28011.024	Heat-resistant, Threaded, -60 to $+130^{\circ} \mathrm{C}-76$ to $266{ }^{\circ} \mathrm{F}$		P. 63
FD-H18-L31	0 to 100 to 0.394	0 to 250 to 0.984	Heat-resistant, Glass substrate detection convergent reflective, -60 to $+180^{\circ} \mathrm{C}-76$ to $356^{\circ} \mathrm{F}$		P. 63
FD-H20-21	903.543	28011.024	Heat-resistant, Threaded, -60 to $+200^{\circ} \mathrm{C}-76$ to $392{ }^{\circ} \mathrm{F}$		P. 63
FD-H20-M1	1204.724	30011.811	Heat-resistant, Threaded, -60 to $+200^{\circ} \mathrm{C}-76$ to $392{ }^{\circ} \mathrm{F}$		P. 63
FD-H25-L43 (Note 4)	4 to 160.157 to 0.630	4 to 230.157 to 0.906	Heat-resistant, Glass substrate detection convergent reflective, $-20 \text { to }+250^{\circ} \mathrm{C}-4 \text { to } 482^{\circ} \mathrm{F}$ (Ordinary temp. side: 20 to $+70^{\circ} \mathrm{C}-4$ to $158{ }^{\circ} \mathrm{F}$)	3 m 9.843 ft	P. 63
FD-H25-L45 (Note 4)	7 to 350.276 to 1.378	7 to 380.276 to 1.496	Heat-resistant, Glass substrate detection convergent reflective, $-20 \text { to }+250^{\circ} \mathrm{C}-4 \text { to } 482^{\circ} \mathrm{F}$ (Ordinary temp. side: 20 to $+70^{\circ} \mathrm{C}-4$ to $158^{\circ} \mathrm{F}$)	3 m 9.843 tt	P. 63
FD-H30-KZ1V-S (Note 4, 5)	25 to 800.984 to 3.150	10 to 2200.394 to 8.661	Vacuum-resistant, Reflective, -30 to $+300^{\circ} \mathrm{C}-22$ to $572^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 64
FD-H30-L32	2 to 90.079 to 0.354	0 to 170 to 0.669	Heat-resistant, Glass substrate detection convergent reflective, -60 to $+300^{\circ} \mathrm{C}-76$ to $572^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 64
FD-H30-L32V-S (Note 4, 5)	2.5 to 6.50 .098 to 0.256	0 to11 0 to 0.433	Vacuum-resistant, Convergent reflective, $-30 \text { to }+300^{\circ} \mathrm{C}-22 \text { to } 572^{\circ} \mathrm{F}$	3 m 9.843 ft	P. 64
FD-H35-20S	853.346	2007.874	Heat-resistant, Threaded, -60 to $+350{ }^{\circ} \mathrm{C}-76$ to $662^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 64
FD-H35-M2	752.953	28011.024	Heat-resistant, Threaded, -60 to $+350{ }^{\circ} \mathrm{C}-76$ to $662{ }^{\circ} \mathrm{F}$		P. 64
FD-H35-M2S6	752.953	28011.024	Heat-resistant, Threaded, -60 to $+350{ }^{\circ} \mathrm{C}-76$ to $662^{\circ} \mathrm{F}$	m 6.562 t	P. 64
FD-HF40Y (Note 3)	$\varnothing 4 \mathrm{~mm} ø 0.157$ in Protective tube: Fluorine resin, length 500 mm 19.685 in (cuttable) Liquid surface not contacted: Beam received, Liquid surface contacted: Beam not received		Contact type, Liquid level sensing, Metal-free, $-40 \text { to }+105^{\circ} \mathrm{C}-40 \text { to } 221^{\circ} \mathrm{F}$	${ }^{\circ}<2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 64
FD-L10 (Note 4)	0 to 4.50 to 0.177	0 to 5.50 to 0.217	Glass substrate detection, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 65
FD-L11 (Note 4)	0 to 80 to 0.315	0 to 90 to 0.354	Glass substrate detection, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 65
FD-L12W (Note 4)	1 to 4.50 .039 to 0.177	0.5 to 70.020 to 0.276	Ultla-small, -40 to $+60^{\circ} \mathrm{C}-40$ to $140{ }^{\circ} \mathrm{F}$	$\mathcal{S}^{\mathcal{L}}$ < 1 m 3.281 ft	P. 65
FD-L20H	5 to 150.197 to 0.591	1 to 300.039 to 1.181	General purpose, -40 to $+70^{\circ} \mathrm{C}-40$ to $158{ }^{\circ} \mathrm{F}$		P. 65
FD-L21 (Note 4)	3 to 150.118 to 0.591	1.5 to 160.059 to 0.630	Glass substrate detection, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	52 ft	P. 65
FD-L21W (Note 4)	7 to 120.276 to 0.472	3 to 140.118 to 0.551	Glass substrate detection, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	\% 2 m 6.562 t	P. 65
FD-L22A (Note 4)	0 to 190 to 0.748	0 to 250 to 0.984	Glass substrate detection, 0 to $+70{ }^{\circ} \mathrm{C} 32$ to $158^{\circ} \mathrm{F}$		P. 65
FD-L23 (Note 4)	0 to 280 to 1.102	0 to 300 to 1.181	Glass substrate detection, -20 to $+70^{\circ} \mathrm{C}-4$ to $158{ }^{\circ} \mathrm{F}$		P. 65
FD-L30A (Note 4)	0 to 400 to 1.575	0 to 500 to 1.969	Glass substrate detection, 0 to $+70{ }^{\circ} \mathrm{C} 32$ to $158{ }^{\circ} \mathrm{F}$	${ }^{8} \times 3 \mathrm{~m} 9.843 \mathrm{ft}$	P. 65
FD-L31A (Note 4)	5 to 300.197 to 1.181	4 to 330.157 to 1.299	Glass substrate detection, 0 to $+70{ }^{\circ} \mathrm{C} 32$ to $158{ }^{\circ} \mathrm{F}$		P. 65
FD-L32H (Note 4)	16 to 300.630 to 1.181	0 to 500 to 1.969	Glass substrate detection, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	\% 4 m 13.123 ft	P. 66

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The sensing range of reflective type is the value for white non-glossy paper (as for FD-H30-L32 and FD-H18-L31 $50 \times 50 \mathrm{~mm} 1.969 \times 1.969$ in glass substrate).
3) Liquid inflow prevention joint, protective tube extension joint, fiber mounting joint are available. Please refer to p. 38 for details.
4) The sensing range is specified for transparent glass $100 \times 100 \times$ t0.7 mm $3.937 \times 3.937 \times$ t0.028 in (FD-L32H: R edge, FD-L21 and FD-L21W: t2 mm t0.079 in) [FD-L10: silicon wafers $100 \times 100 \mathrm{~mm} 3.937 \times 3.937 \mathrm{in]}$.
5) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8).
6) The allowable cutting range is $1,000 \mathrm{~mm} 39.370$ in from the end that is inserted to the amplifier.

LIST OF FIBERS

Reflective type

Fibers are listed in alphabetic order. Refer to p.5~ "Fiber Selection" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1) (Note 2)		Type / Ambient temperature	Fiber cable length \%<: Free-cut	Dimensions
	Standard type FX-101ם	Long sensing range type FX-102			
FD-R31G	451.772	1505.906	Square head, M3, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	\% 2 m 6.562 ft	P. 66
FD-R32EG	200.787	682.677	Square head, M3, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$		P. 66
FD-R33EG	70.276	220.866	Square head, M3, -20 to $+60^{\circ} \mathrm{C}-4$ to $140^{\circ} \mathrm{F}$	500 mm 19.685 in	P. 66
FD-R34EG	170.669	602.362	Square head, M3, -40 to $+70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$		P. 66
FD-R41	602.362	1706.693	Square head, M4, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 66
FD-R60	1104.331	2409.449	Threaded, M6, Elbow, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	\% 2 m 6.562 ft	P. 66
FD-R61Y	853.346	1857.283	Oil-resistant, Square head, M6, Cable-proection type, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 66
FD-S21	250.984	702.756	Cylindrical, $\varnothing 1.50 .059,-55$ to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	1 m 3.281 ft	P. 66
FD-S30	451.772	1556.102	Super quality, Cylindrical, ø3 0.118, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 67
FD-S31	351.378	1405.512	Cylindrical, $\varnothing 30.118,-55$ to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 67
FD-S32	1204.724	34513.583	Cylindrical, $\varnothing 30.118,-55$ to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$	2 m 6.562 ft	P. 67
FD-S32W	803.150	2309.055	Cylindrical, $\varnothing 30.118,-40$ to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	t	P. 67
FD-S33GW	451.772	1405.512	Cylindrical, $\varnothing 30.118,-40$ to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 67
FD-S60Y	1405.512	30011.811	Chemical-resistant, Chlindrical, Metal-free, $\varnothing 5.50 .217$, -40 to $+70^{\circ} \mathrm{C}-40$ to $158{ }^{\circ} \mathrm{F}$	\& 2 m 6.562 ft (Note 3)	P. 67
FD-V30	250.984	752.953	Sleeve, Cylindrical, Side-view, ø3 0.118, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 67
FD-V30W	60.236	200.787	Sleeve, Cylindrical, Side-view, ø3 0.118, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	${ }^{\circ} \times 2 \mathrm{~m} 6.562 \mathrm{ft}$	P. 67
FD-V50	401.575	1003.937	Sleeve, Cylindrical, Side-view, ø5 0.197, -55 to $+80^{\circ} \mathrm{C}-67$ to $176{ }^{\circ} \mathrm{F}$		P. 68
FD-Z20HBW	2 to 300.079 to 1.181	1 to 900.039 to 3.543	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 68
FD-Z20W	2 to 320.079 to 1.260	1 to 800.039 to 3.150	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 68
FD-Z40HBW	1 to 900.039 to 3.543	0.5 to 2400.020 to 9.449	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 68
FD-Z40W	1 to 740.039 to 2.913	2007.874	Flat with boss, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$	\% 2 m 6.562 ft	P. 68
FD-Z50HW	10 to 2000.394 to 7.874	10 to 5300.394 to 20.866	Narrow Beam, Long range, -40 to $+60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$		P. 68

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The sensing range is specified for white non-glossy paper.
3) The allowable cutting range is 500 mm 19.685 in from the end that the amplifier inserted.

Sensing range when FR-Z50HW is used in combination with a reflector (optional)

Reflector Model No.	Sensing range (mm in)	
	Standard type FX-101ם	Long sensing range type FX-102
RF-220 $2,4003.937$ to 94.488	100 to $5,0003.937$ to 196.850	
RF-210	100 to $1,3003.937$ to 51.181	100 to $2,6003.937$ to 102.362

Selection Guide
Fibers
Fiber
Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
FX-301-F7/
FX-301-F

Lens (For thru-beam type fiber)

Designation	Model No.			scription		
Expansion lens (Note 1)	FX-LE1		Increases the sensing range by 5 times or more. - Ambient temperature: $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \\ & \text { (Note 4) } \end{aligned}$ - Beam dia: ø3.6 mm ø0.142 in	Sensing range (mm in) [Lens on both sides]		
				Fiber Mode	FX-101■	FX-102■
				FT-43	2,400 94.488	3,600 141.732 (Note 2)
				$\begin{aligned} & \text { FT-42 } \\ & \text { FT-42W } \\ & \hline \end{aligned}$	3,400 133.858	3,600 141.732 (Note 2)
				FT-45X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
		-		FT-R40	3,100 122.047	3,600 141.732 (Note 2)
				FT-R43	1,300 51.181	3,600 141.732 (Note 2)
				FT-H35-M2	2,000 78.740	3,500 137.795 (Note 2)
				FT-H20W-M1	1,300 51.181	1,600 62.992 (Note 2)
				FT-H20-M1	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
				$\begin{aligned} & \text { FT-H20-J50-S } \\ & \text { FT-H20-J30-S } \\ & \text { FT-H20-J20-S } \end{aligned}$	1,000 39.370	3,500 137.795 (Note 2)
Superexpansion lens (Note 1)	FX-LE2		Tremendously increases the sensing range with large diameter lenses. - Ambient temperature: $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \\ & \text { (Note 4) } \end{aligned}$ - Beam dia: ø9.8 mm ø0.386 in	Sensing range (mm in) [Lens on both sides]		
				Fiber Mode	FX-101	FX-102
				FT-43 FT-42 FT-42W	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)
				FT-45X	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
				FT-R40	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)
				FT-R43	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)
				FT-H35-M2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
				$\begin{aligned} & \text { FT-H20W-M1 } \\ & \text { FT-H20-M1 } \end{aligned}$	1,600 62.992 (Note 2)	1,600 62.992 (Note 2)
				FT-H13-FM2	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
				$\begin{aligned} & \text { FT-H2O-J50-S } \\ & \text { FT-H2O-J30-S } \\ & \text { FT-H2O-J20-S } \end{aligned}$	3,500 137.795 (Note 2)	3,500 137.795 (Note 2)
Side-view lens	FX-SV1		Beam axis is bent by 90°. - Ambient temperature: $\begin{aligned} & -60 \text { to }+300{ }^{\circ} \mathrm{C} \\ & -76 \text { to }+572{ }^{\circ} \mathrm{F} \\ & \text { (Note } 4 \text {) } \end{aligned}$ - Beam dia: $\varnothing 2.8 \mathrm{~mm} ø 0.110 \mathrm{in}$	Sensing range (mm in) [Lens on both sides]		
				Fiber Mode	FX-101■	FX-102■
				FT-43	51020.079	1,400 55.118
				FT-42	50019.685	1,700 66.929
				FT-42W	48018.898	1,300 51.181
				FT-45X	54021.260	1,600 62.992 (Note 2)
				FT-R43	31012.205	93036.614
				FT-H35-M2	28011.024	80031.496
				FT-H20W-M1	1405.512	40015.748
				FT-H20-M1	28011.024	84033.071
				$\begin{aligned} & \text { FT-H20-J50-S } \\ & \text { FT-H20-J30-S } \\ & \text { FT-H20-J20-S } \\ & \hline \end{aligned}$	1505.906	41016.142
Expansion lens for vacuum fiber (Note 1)	FV-LE1		Sensing range increases by 4 times or more. - Ambient temperature: -60 to $+350^{\circ} \mathrm{C}-76$ to $+662^{\circ} \mathrm{F}$ (Note 4) - Beam dia: ø3.6 mm ø0.142 in	Sensing range (mm in) [Lens on both sides] (Note 3)		
				Fiber	FX-101■	FX-102■
				FT-H30-M1V-S	45017.717	1,600 62.992
Vacuumresistant side-view lens	FV-SV2	Beam axis is bent by 90°. - Ambient temperature: -60 to $+300{ }^{\circ} \mathrm{C}-76$ to $+572^{\circ} \mathrm{F}$ (Note 4) - Beam dia: ø3.7 mm ø0.146 in		Sensing range (mm in) [Lens on both sides] (Note 3)		
				Fiber Mode	FX-101■	FX-102■
				FT-H30-M1V-S	45017.717	1,600 62.992

Notes: 1) Be careful sure to use it only after you have adjusted it sufficiently when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult.
2) The fiber cable length practically limits the sensing range.
3) The fiber cable length for the FT-H30-M1V-S is 1 m 3.28 ft . The sensing ranges in FX-102a are specified considering the length of the FT-J8 atmospheric side fiber.
4) Refer to "LIST OF FIBERS (p.124~)" for the ambient temperature of fibers to be used in combination.

Lens (For reflective type fiber)

Designation		Model No. FX-MR1	Description				
	Pinpoint spot lens			Pinpoint spot of $\varnothing 0.5 \mathrm{~mm} \varnothing 0.020 \mathrm{in}$. Enables detection of minute objects or small marks. - Distance to focal point: $6 \pm 1 \mathrm{~mm} 0.236 \pm 0.039$ in - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ (Note)			
	Zoom lens	FX-MR2		The spot diameter is adjustable from $\varnothing 0.7$ to $\varnothing 2$ $\mathrm{mm} \varnothing 0.028$ to $\varnothing 0.079$ in according to how much the fiber is screwed in. - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ $-40 \text { to }+158^{\circ} \mathrm{F} \text { (Note) }$ - Accessory: MS-EX3 (mounting bracket)	Sensing range f	F FX-100 ser	
					Screw-in depth	Distance to focal point	Spot diameter
					7 mm 0.276 in	18.5 mm 0.728 i approx.	$\varnothing 0.7 \mathrm{~mm} \varnothing 0.028$ in
					12 mm 0.472 in	27 mm 1.063 in approx.	81.2 mm 80.047 in
					14 mm 0.551 in	43 mm 1.693 in approx.	¢2.0 mm 00.079 in
	Finest spot lens	FX-MR3		Extremely fine spot of $\varnothing 0.15 \mathrm{~mm} ø 0.006$ in approx. achieved. - Applicable fibers: FD-EG31, FD-EG30, FD-42G, FD-42GW, FD-32G, FD-32GX - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ $-40 \text { to }+158^{\circ} \mathrm{F} \text { (Note) }$	Sensing range for FX-100 series		
					Fiber model No.	Distance to focal point	Spot diameter
					FD-EG31		00.15 m m 0.006 in appox.
					FD-EG30	$7.50 .5 .5 \mathrm{~mm} 0.25 \mathrm{Sin}+0.02 \mathrm{in}$	00.3 mm 00.012 i i appox.
					$\begin{aligned} & \text { FD-42G/42GW } \\ & \text { FD-32G/32GX } \end{aligned}$		00.5 mm 00.020 in aprox.
	Finest spot lens	FX-MR6		Extremely fine spot of $\varnothing 0.1 \mathrm{~mm} \varnothing 0.004 \mathrm{in}$ approx. achieved. - Applicable fibers: FD-EG31, FD-EG30, FD-42G, FD-42GW, FD-32G, FD-32GX - Ambient temperature: -20 to $+60^{\circ} \mathrm{C}$ $-4 \text { to }+140^{\circ} \mathrm{F} \text { (Note) }$	Sensing range for FX-100 series		
					Fiber model No.	Distance to focal point	Spot diameter
					FD-EG31	$7 \pm 0.5 \mathrm{~mm} 0.276$ in $\pm 0.202 \mathrm{in}$	00. 1 mm m0.004 i approx.
					FD-EG30	$7 \pm 0.5 \mathrm{~mm} 0.276 \mathrm{in}+0.020 \mathrm{in}$	00.2 mm 80.008 i i aprox.
					$\begin{aligned} & \text { FD-42G/42GW } \\ & \text { FD-32G/32GX } \end{aligned}$	$7 \pm 0.5 \mathrm{~mm} 0.276$ int0.020 in	00.4 mm 00.016 in aprox.
	Zoom lens side-view type	FX-MR5		FX-MR2 is converted into a side-view type and can be mounted in a very small space. - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}$ -40 to $+158^{\circ} \mathrm{F}$ (Note)	Sensing range for FX-100 series		
					Fiber model No.	Distance to focal point	Spot diameter
					8 mm 0.315 in	$13 \mathrm{~mm} 0.512 \mathrm{i} \mathrm{in} \mathrm{approx}$.	$\varnothing 0.5 \mathrm{~mm} 80.020 \mathrm{in}$
					10 mm 0.394 in	15 mm 0.591 i approx.	ø0.8 mm $\varnothing 0.031 \mathrm{in}$
					14 mm 0.551 in	30 mm 1.181 in approx.	$\varnothing 3.0 \mathrm{~mm}$ ø0. 118 in

Note: Refer to p. 126 for the ambient temperature of fibers to be used in combination.
Lens (For square head M3 reflective fiber)

Type		Spot diameter (mm in)(Note)	Distance to focal point (mm in)(Note)	Lens		Fiber			
		Shape (mm in)		Model No.	Shape	Emitting fiber core (mm in)	Model No.		
	Finest spot lens		$\begin{aligned} & \varnothing 0.1 \varnothing 0.004 \\ & \text { approx. } \end{aligned}$	$\left\lvert\, \begin{gathered} 7 \pm 0.5 \\ 0.276 \pm 0.020 \end{gathered}\right.$	$\cos _{00.197}^{\frac{\downarrow}{4}} \stackrel{\left.\begin{array}{c} 15.3 \\ \\ 0 \end{array}\right) \mid \text {.602 } \rightarrow \mid}{ }$	FX-MR7	[forr	ø0.125 ø0.005	FD-R33EG
		-m@mer					ø0.125 ø0.005	FD-EG31	
		$\begin{aligned} & \varnothing 0.15 \propto 0.006 \\ & \text { approx. } \end{aligned}$	90,				ø0.175 ø0.007	FD-R34EG	
		$ø 0.2$ ø0.008	1				$ø 0.25$ ø0.010	FD-R32EG	
		approx.	- 0 Qmer				ø0.25 ø0.010	FD-EG30	
		$\varnothing 0.4 \varnothing 0.016$ approx.	[80				ø0.5 ø0.020	FD-R31G	
			-atma				ø0.5 ø0.020	FD-32G	
			xal				ø0.5 ø0.020	FD-32GX	
							ø0.5 ø0.020	FD-42G	
							$ø 0.5$ ø0.020	FD-42GW	

Type		Spot diameter (mm in)(Note)	Sensing range (mm in)(Note)	Lens		Applicable fibers		
		Shape (mm in)		Model No.	Emitting fiber core (mm in)	Model No.		
			80.4to 82.0000 .016 to 000.079 approx.	$\left\lvert\, \begin{gathered} 10 \text { to } 30 \\ 0.394 \text { to1.181 } \end{gathered}\right.$	$\underset{0500 . \frac{197}{4}\left\|\leftarrow-\frac{15}{}=1 \rightarrow\right\|}{ }$	FX-MR8	$\varnothing 0.125$ ø0.005	FD-R33EG, FD-EG31
		90.4to 02.2000 .016 to 00.087 approx.	ø0.175 ø0.007				FD-R34EG	
		80.5 to 02.50.50.020 to 00.098 approx.	$\varnothing 0.25$ ¢0.010				FD-R32EG, FD-EG30	
		80.880 03.50.00.031 to 00.138 approx.	$\varnothing 0.5$ ¢0.020				FD-R31G, FD-32G, FD-32GX, FD-42G, FD-42GW	
		ø4.0 ø0.157 approx.	$\begin{gathered} 0 \text { to } 30 \\ 0 \text { to } 1.181 \end{gathered}$	${ }_{0500.197}^{\frac{1}{4}}=$	FX-MR9	$\varnothing 0.125$ ø0.005	FD-R33EG, FD-EG31	
						$\varnothing 0.175$ ø0.007	FD-R34EG	
						$\varnothing 0.25$ ø0.010	FD-R32EG, FD-EG30	
						$\varnothing 0.5$ ø0.020	FD-R31G, FD-32G, FD-32GX, FD-42G, FD-42GW	

[^1]
SPECIFICATIONS

Item	Type	Standard type		Long sensing range type	
			Cable set		Cable set
	NPN output	FX-101(-Z) (Note 5)	FX-101-CC2	FX-102(-Z) (Note 5)	FX-102-CC2
	PNP output	FX-101P(-Z) (Note 5)	FX-101P-CC2	FX-102P(-Z) (Note 5)	FX-102P-CC2
Supply voltage		12 to 24 V DC ± 10 \% Ripple P-P 10 \% or less			
Power consumption		Normal operation: 720 mW or less (Current consumption 30 mA or less at 24 V supply voltage) ECO mode: 600 mW or less (Current consumption 25 mA or less at 24 V supply voltage)			
Output		<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 1.5 V or less (at 100 mA sink current)		<PNP output type> PNP open-collector transistor - Maximum source current: 100 mA - Applied voltage: 30 V DC or less (between output and +V) - Residual voltage: 1.5 V or less (at 100 mA source current)	
Output operation		Selectable either Light-ON or Dark-ON, at SET mode			
Short-circuit protection		Incorporated			
External input		<NPN output type> NPN non-contact input - Signal condition High: +8 V to +V DC or Open Low: 0 to +2 V DC (Source current 0.5 mA or less) - Input impedance: $10 \mathrm{k} \Omega$ approx.		<PNP output type> PNP non-contact input - Signal condition High: +4 V to +V DC (Sink current 0.5 to 3 mA) Low: 0 to +0.6 V DC or Open - Input impedance: $10 \mathrm{k} \Omega$ approx.	
Response time		Emission frequency 0: 250μ s or less (factory default setting) Emission frequency 1: 450μ s or less Emission frequency 2: 500μ s or less Emission frequency 3: 600μ s or less		Emission frequency 1:2.5 ms or less (factory default setting) Emission frequency 2: 2.8 ms or less Emission frequency 3: 3.2 ms or less Emission frequency 4: 5.0 ms or less	
Sensitivity setting		2-point teaching / Limit teaching / Full-auto teaching			
Operation indicator		Orange LED (lights up when the output is ON)			
Digital display		4 digits (green) +4 digits (red) LCD display			
Fine sensitivity adjustment function		Incorporated			
Timer function		ON-delay / OFF-delay timer, switchable either effective or ineffective [Timer period: $1 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, 40 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 500 \mathrm{~ms}, 1,000 \mathrm{~ms}$]			
Emission amount setting function		3 -level + Auto setting (from production in December 2007)			
Interference prevention function		Incorporated Emission frequency selection method (Note 2) (Functions at emission frequency 1, 2 or 3)		Incorporated Emission frequency selection method (Note 2) (Functions at emission frequency 1, 2, 3 or 4)	

	Ambient temperature	-10 to $+55^{\circ} \mathrm{C}+14$ to $+131^{\circ} \mathrm{F}$ (If 4 to 7 units are mounted close together: -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$, if 8 to 16 units are mounted close together: -10 to $+45^{\circ} \mathrm{C}+14$ to $+113{ }^{\circ} \mathrm{F}$) (No dew condensation or icing allowed), Storage: -20 to $+70^{\circ} \mathrm{C}-4$ to $+158^{\circ} \mathrm{F}$			
	Ambient humidity	35 to 85 \% RH, Storage: 35 to 85 \% RH			
	Ambient illuminance	Incandescent light: 3,000 lx at the light-receiving face			
	Voltage withstandability	$1,000 \mathrm{~V}$ AC for one min. between all supply terminals connected together and enclosure (Note 3)			
	Insulation resistance	$20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 3)			
	Vibration resistance	10 to 150 Hz frequency, 0.75 mm 0.030 in amplitude in X, Y and Z directions for two hours each			
	Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in X, Y and Z directions for five times each			
Emi	ting element (modulated)	Red LED (Peak emission wavelength: 643 nm 0.025 mil)			
Mat	erial	Enclosure: Polycarbonate, Key switch: Polycarbonate, Fiber lock lever: PBT			
Con	necting method	Connector (Note 4)			
Cab	le length	Total length up to 100 m 328.084 ft is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.			
Wei		Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.	Net weight: 15 g approx. Gross weight: 35 g approx.	Net weight: 15 g approx. Gross weight: 75 g approx.
Acc	essory	FC-FX-1 (Protection cover): 1 pc. (Note 6)	FC-FX-1 (Protection cover): 1 pc . (Note 6) CN-14A-C2 (Connector attached cable, 2 m 6.562 flong): 1 pc .	FC-FX-1 (Protection cover): 1 pc. (Note 6)	FC-FX-1 (Protection cover): 1 pc. (Note 6) CN-14A-C2 (Connector attached cable, 2 m 6.562 flong): 1 pc .

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73.4^{\circ} \mathrm{F}$.
2) When using the interference prevention function, set the emission frequencies for the amplifiers to be covered by the interference prevention function to different frequency values.
However, the interference prevention function does not operate at emission frequency 0 (factory default setting) for the FX-101(P)(-Z)/ FX-101(P)-CC2.
3) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.
4) Connector attached cable CN-14A-C2 is not attached to the models that have no "-CC2" at the end of the model Nos.

Make sure to use the optional connector attached cable CN-14A(-R)-C \square or the connector CN-14A, or a connector manufactured by J.S.T. Mfg., Ltd.
(contact: SPHD-001T-P0.5, housing: PAP-04V-S).
5) Model Nos. having the suffix "-Z" are M8 plug-in connector type. Make sure to use the optional M8 attached connector cable CN-24A-C \square.
6) Protection cover FC-FX-1 has been attached from production in July, 2011.

I/O CIRCUIT AND WIRING DIAGRAMS

SENSOR

WIRE-SAVING
SYSTEMS

COMPONENTS

MACHINE SYSTEMS

Parallel deviation

Parallel deviation

FT-S31W Thru-beam type

Parallel deviation

FD-41S

Reflective type

Sensing field

- Vertical direction

Parallel deviation

FT-A11

Parallel deviation

- Horizontal direction

FD-32G Reflective type
Sensing field

- Vertical direction

FD-32GX Reflective type

Sensing field

FD-41W

Sensing field

Reflective type

- Vertical direction

Reflective type
Sensing field

- Horizontal direction

FD-S33GW Reflective type

Sensing field

- Vertical direction

FD-61G Reflective type
Sensing field

FD-62
Reflective type
Sensing field

Reflective type
Sensing field

- Horizontal direction

- Vertical direction

PRECAUTIONS FOR PROPER USE

Refer to General precautions, and to the "Operation Guide" on our website for details pertaining to operating instructions for the amplifier.

Wiring

- Make sure that the power supply is OFF while adding or removing the amplifiers.
- Note that if a voltage exceeding the reted range is applied, or if an AC power supply is directly connected, the product may get burnt or damaged.
- Note that short-circuit of the load or wrong wiring may burn or damage the product.
- Do not run the wires together with high-voltage lines or power lines, or put them in the same raceway. This can cause malfunction due to induction.
- Verify that the supply voltage variation is within the rating.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- Make sure to use the quick-connection cable (optional) for the connection of the controller.
Extension up to total 100 m 328.084 ft is possible with 0.3 mm^{2} or more, cable. However, in order to reduce noise, make the wiring as short as possible.

Part description

Setting mode

- Setting mode appears after the MODE key is pressed for 2 sec. in RUN mode.

Setting item	Factory setting	Description		
$\begin{array}{l}\text { Teaching } \\ \text { mode }\end{array}$		ERCh	$]$	Threshold value can be set in 2-point teaching,
:---				
limit teaching, or full-auto teaching.				

PRECAUTIONS FOR PROPER USE

PRO mode

- PRO mode appears after the MODE key is pressed for 4 sec. in RUN mode.

| Setting item | Factory setting | Description |
| :--- | :--- | :--- | :--- |
| Shift
 setting | | Shift amount can be selected from 0 to 80 \% in
 [Shift amount 15\%] |
| the limit teaching. Select 0 \% when it is desired | | |
| to set the present incident light intensity as a | | |
| threshold value. | | |

Notes: 1) When ECO is selected at the external input setting mode, key operation on the main body is invalid during external input.
2) This mode is not indicated unless any of " LLcP", "LLc-", "Ruto" or " $\mathrm{Z}^{2}-\mathrm{PL}$ " is set at the external input setting mode. (Incorporated from production in December 2007.)
3) If the incident light intensity becomes " 300 " or less, the follow-up operation stops. In that condition, threshold value [digital display (green)] blinks. This function can be used when thru-beam type or retroreflective type fiber is applied to this product. If reflective type fiber is applied, the function cannot be used depending on use conditions.
4) If MODE key is pressed in RUN mode when GETA function is used, the incident light intensity before setting GETA function is displayed on the red digital display for 2 sec . approx.
5) When GETA function is used in saturation of incident light intensity (4,000 or more,) "HRrd" is indicated on the red digital display. Correction value is up to 4,000 .
6) This mode does not operate unless any of "LEGP", "LEc-" or " $2-P L$ " is set at the external input setting mode. (Incorporated from production in December 2007.)

Refer to General precautions, and to the "Operation Guide" on our website for details pertaining to operating instructions for the amplifier.

Setting copy function

- This can copy the settings of the master side amplifier to the slave side amplifier.
- Be sure to use the setting copy function between the identical models (Between FX-101ם models or FX-102■ models).
This function cannot be used between different models.
- Only one sensor can be connected on slave side with a master side sensor for the setting copy function.
- Threshold value, output operation setting, timer operation setting, timer setting, light-emitting amount setting, shift setting, external input setting, threshold value margin setting, ECO setting, digital display inversion setting, and threshold value margin setting can be copied.

<Setting procedures>

(1) Set the setting copy mode of the master side amplifier to "Copy sending ON", and press the MODE key so that " sensor is in copy ready state. For the setting method, refer to "Operation guide".
(2) Turn off the master side amplifier.
(3) Connect the master side amplifier with the slave side amplifier as shown below.

(4) Turn on the master side amplifier and the slave side amplifier at the same time. (Note)
(5) "[r]" is shown on the green digital display of the master side amplifier and 4-digit code is shown on the red digital display of it, then the copying starts. During copy communication, "Lr"" is shown on the green digital display of the slave side amplifier, and the ongoing copy communication indicator (" \quad " \rightarrow " \quad it " \rightarrow " \quad "i'" \rightarrow
 the red digital display.
(6) When the copying is completed, " " is shown on the green digital display of the slave side amplifier, while the 4-digit code (the same code as the master side amplifier) is shown on the red digital display of it.
(7) Turn off the power of the master side amplifier and the slave side amplifier and disconnect the wire.

* If copying the settings to another amplifier repeatedly, follow the steps (3) to (7).

Note: Take care that if the power is not turned on at the same time, the setting contents may not be copied.
<To cancel the setting copy mode of the master side amplifier>
(1) While the slave side amplifier is disconnected, turn on the power of the master side amplifier.
(2) Press the MODE key for 2 sec. approx.

$\begin{aligned} & \text { FIBER } \\ & \text { SENSORS } \end{aligned}$
$\begin{aligned} & \text { LASER } \\ & \text { SENSORS } \end{aligned}$
PHOTO- ELECTRIC SENSORS
MICRO PHOTOELECTRIC SENSORS
AREA SENSORS
LIGGT CURTANS/ SAEET COMPONENTS
$\begin{aligned} & \text { PRESSURE / } \\ & \text { FLOW } \\ & \text { SENSORS } \end{aligned}$
INDUCTIVE PROXIMITY SENSORS
PARTICULAR USE SENSORS
SENSOR OPTIONS
SIMPLE WIRE-SAVING UNTS
$\begin{aligned} & \text { WIRE-SAVING } \\ & \text { SYSTEMS } \end{aligned}$
MEASUREMENT SENSORS
STATC ELECTRICITY PREVENTION DEVICES
LASER MARKERS
PLC
HUMAN MACHINE INTERFACES
ENERGY CONSUMPTION पISAALIZATION COMPONENT
FA COMPONENTS
MACHINE VISION SYSTEMS
$\begin{aligned} & \text { UV } \\ & \text { CURING } \\ & \text { SYSTEMS } \end{aligned}$
Selection Guide
Fibers
Fiber Amplifiers
FX-500
FX-100
FX-300
FX-410
FX-311
$\begin{aligned} & \text { FX-301-F7/ } \\ & \text { FX-301-F } \end{aligned}$

FX-301-F7/
FX-301-F

PRECAUTIONS FOR PROPER USE

Others

－Our products have been developed／produced for industrial use only．
－Do not use during the initial transient time（ 0.5 sec ．）after the power supply is switched on．
－Take care that the product is not directly exposed to fluorescent lamp from a rapid－starter lamp，a high frequency lighting device or sunlight etc．，as it may affect the sensing performance．
－This product is suitable for indoor use only．
－Avoid dust，dirt，and steam．
－Take care that the product does not come in contact with oil，grease，organic solvents，such as thinner，etc．，strong acid or alkaline．
－This product cannot be used in an environment containing inflammable or explosive gases．
－Never disassemble or modify this product．
－EEPROM is adopted to this product．It is not possible to conduct teaching 100 thousand times or more，because of the EEPROM＇s lifetime．

Quick setting function

－The quick setting function makes it possible to set the content of the SET Mode（output operation，timer operation，amount of light emitted，and frequency of light emitted）simply by selecting a setting number．
－While in the RUN Mode，pressing and holding both the ON key（ $\boxed{\Delta}$ ）and OFF key（回）simultaneously for 2 seconds will switch to the quick setting function．

＜Table of quick setting numbers＞

No．	Output operation	Timer	Emission amount setting（Note）
－916－	D－ON	non	Level 3 （OFF）
－ 21 －	D－ON	non	Level 2 （ON）
－ 195	D－ON	ofd 10 ms	Level 3 （OFF）
－ก3コ－	D－ON	ofd 10 ms	Level 2 （ON）
－ 914 －	D－ON	ofd 40 ms	Level 3 （OFF）
－95－	D－ON	ofd 40 ms	Level 2 （ON）
－950－	D－ON	ond 10 ms	Level 3 （OFF）
－197－	D－ON	ond 10 ms	Level 2 （ON）
－ 280	D－ON	ond 40 ms	Level 3 （OFF）
－ 1997	D－ON	ond 40 ms	Level 2 （ON）
－110－	L－ON	ond 40 ms	Level 2 （ON）
－11－	L－ON	ond 40 ms	Level 3 （OFF）
－ 123	L－ON	ond 10 ms	Level 2 （ON）
－13－	L－ON	ond 10 ms	Level 3 （OFF）
－ $14-$	L－ON	ofd 40 ms	Level 2 （ON）
－ 15 －	L－ON	ofd 40 ms	Level 3 （OFF）
－15－	L－ON	ofd 10 ms	Level 2 （ON）
－17－	L－ON	ofd 10 ms	Level 3 （OFF）
－18－	L－ON	non	Level 2 （ON）
－19－	L－ON	non	Level 3 （OFF）

Note：Until production in November 2007，OFF or ON was selectable．The emission amount of Level 2 （ON）is about 40\％of that of Level 3 （OFF）．

Difference between previous model and upgraded one
－For upgraded ones（production in and after December 2007），＂P＂is marked near the beam－emitting inlet． Previous ones have no marking．Appearance and functions have been changed．

Refer to General precautions，and to the＂Operation Guide＂on our website for details pertaining to operating instructions for the amplifier．

Code setting function

－The code setting function makes it possible to set the output operation，timer operation，amount of light emitted， frequency of light emitted，ECO setting，external input， and amount of shift by selecting a code of one＇s choice．
－While in the RUN Mode，pressing and holding both the ON key（ Δ ）and OFF key（回）simultaneously for 4 seconds will switch to the code setting function．
＜Code table＞

Notes：1）When the present setting is out of the code setting range，＂－＂is shown．
When＂－＂is selected，the set content of the digit is not changed．
2）Until production in November 2007，OFF or ON was selectable．
The emission amount of Level 2 is about 40% of that of Level 3.
The emission amount of Level 1 is about 20% of that of Level 3 ．
3）The factory setting is＂際＂

[^0]: * Effective when the output operation is set to Dark-ON, and when using thru-beam type or retroreflective type fibers.

[^1]: Note: Spot diameter, distance to focal point and sensing range are specified for FX-100 series.

