

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

April 2014

FXL2T245

Low-Voltage, Dual-Supply, 2-Bit, Signal Translator with Configurable Voltage Supplies and Signal Levels and 3-State Outputs

Features

- Bi-Directional Interface between any 2 Levels from 1.1 V to 3.6 V
- Fully Configurable, Inputs Track V_{CC} Level
- Non-Preferential Power-up Sequencing; either V_{CC} maybe Powered-up First
- Outputs Remain in 3-State until Active V_{CC} Level is Reached
- Outputs Switch to 3-State if either V_{CC} is at GND
- Power-Off Protection
- Control Inputs (T/R, OE) Levels are Referenced to V_{CCA} Voltage
- Packaged in 10-Lead MicroPak
 (1.6 mm x 2.1 mm) Package
- ESD Protection Exceeds:
 - 4 kV HBM ESD JESD22-A114 & Mil Std 883e 3015.7)
 - 8kV HBM I/O to GND ESD (per JESD22-A114 & Mil Std 883e 3015.7)
 - 1 kV CDM ESD (per ESD STM 5.3)
 - 200 V MM ESD (per JESD22-A115 & ESD STM5.2)

Description

The FXL2T245 is a configurable, dual-voltage-supply translator designed for uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6 V to as low as 1.1 V. The A port tracks the $V_{\rm CCA}$ level and the B port tracks the $V_{\rm CCB}$ level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.

The device remains in 3-state until both $V_{\rm CC}s$ reach active levels, allowing either $V_{\rm CC}$ to be powered-up first. Internal power-down control circuits place the device in 3-state if either $V_{\rm CC}$ is removed.

The Transmit / Receive (T/\overline{R}) input determines the direction of data flow through the device. The \overline{OE} input, when HIGH, disables both the A and B ports by placing them in a 3-state condition. The FXL2T245 is designed so control pins T/\overline{R} and \overline{OE} are supplied by V_{CCA} .

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FXL2T245L10X	-40°C to +85°C	10-Lead, MicroPak™, JEDEC MO255,1.6 x 2.1 mm	Tape and Reel

Pin Configuration

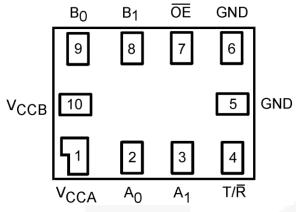


Figure 1. Pin Assignments

Pin Descriptions

Pin#	Pin Name	Description
1	V _{CCA}	Side A Power Supply
2	A ₀	Side A Inputs or 3-State Outputs
3	A ₁	Side A Inputs or 3-State Outputs
4	T/R	Transmit/Receive Input
5, 6	GND	Ground
7	Ō/Ē	Output Enable Input
8	B ₁	Side B Inputs or 3- State Outputs
9	B ₀	Side B Inputs or 3-State Outputs
10	V _{CCB}	Side B Power Supply

Truth Table

Inp	outs	Outputs
ŌĒ	T/R	
LOW	LOW	Bus B Data to Bus A
LOW	HIGH	Bus A Data to Bus B

Notes:

- 1. LOW = low voltage level.
- 2. HIGH = high voltage level.

Functional Description

Power-Up / Power-Down Sequencing

Due to the chip design, the FXL2T245 translator offers the advantage of either V_{CC} being powered up first. When either V_{CC} is at 0 V, outputs are in a high-impedance state. The control inputs (T/R and \overline{OE}) are designed to track the V_{CCA} supply. A pull-up resistor tying \overline{OE} to V_{CCA} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the \overline{OE} driver.

The recommended power-up sequence is:

- 1. Apply power to either V_{CC} .
- 2. Apply power to the T/R input (logic HIGH for A-to-B operation; logic LOW for B-to-A operation) and to the respective data inputs (A port or B port). This may occur at the same time as step 1.
- 3. Apply power to the other V_{CC} .
- 4. Drive the \overline{OE} input LOW to enable the device.

The recommended power-down sequence is:

- Drive OE input HIGH to disable the device.
- 2. Remove power from either V_{CC}.
- 3. Remove power from the other V_{CC}.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit		
V _{CCA}	Cupply Voltage		-0.5	4.6	V		
V _{CCB}	Supply Voltage			-0.5	4.6	V	
		I/O Port A		-0.5	4.6		
V_{I}	DC Input Voltage	I/O Port B		-0.5	4.6	V	
		Control Inputs (T/R, OE)		-0.5	4.6		
		Output 3-State		-0.5	4.6		
Vo	Output Voltage (3)	Output Active (An)	-0.5 to V _{CCA}	0.5	٧		
	/*	Output Active (B _n)		-0.5 to V _{CCB}	0.5	i	
I _{IK}	DC Input Diode Current	V _I < 0 V			-50	mA	
1/	DC Output Diode Current	V ₀ < 0 V		-50	mA		
I _{OK}	DC Output Diode Current	Vo > Vcc		+50	IIIA		
I _{OH} /I _{OL}	DC Output Source/Sink Cu	rrent			±50	mA	
I _{CC}	DC V _{CC} or Ground Current	per Supply Pin			±100	mA	
T_{STG}	Storage Temperature Rang	e	•				
		Human Body Model,	All Pins		4		
ESD	Electrostatic Discharge	JESD22-A114, Mil Std 883e 3015.7	I/O to GND		8	kV	
LSD	Capability	Charged Device Model, JESD22-C10	1,STM 5.3		1		
		Machine Model, JESD22-A115,STM	5.2		200	V	

Note

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Conditions		Max.	Unit
V _{CC}	Power Supply	Operating	V _{CCA} or V _{CCB}	1.1	3.6	٧
		Port A		0	3.6	
Vı	Input Voltage	Port B		0	3.6	V
		Control Inp	outs (T/R, OE)	0	V _{CCA}	
			3.0 V to 3.6 V		±24	
			2.3 V to 2.7 V		±18	
I _{OH} /I _{OL}	Output Current	V_{CC}	1.65 V to 1.95 V		±6	mA
			1.40 V to 1.65 V		±2	
			1.1 V to 1.4 V		±0.5	
T _A	Operating Temperature, Free Air			-40	+85	°C
ΔV/Δt	Minimum Input Edge Rate	V _{CCA/B} =1.	1 V to 3.6 V		10	ns/V

Note:

4. All unused inputs must be held at V_{CCI} or GND.

^{3.} I/O absolute maximum ratings must be observed.

Electrical Characteristics

Symbol	Parameter	Conditions	V _{cco} (V)	V _{CCI} (V)	Min.	Max.	Unit
				2.70 to 3.60	2.00		
				2.30 to 2.70	1.60		
		Data Inputs An, Bn		1.65 to 2.30	0.65 x V _{CCI}		
				1.40 to 1.65	0.65 x V _{CCI}		
	HIGH Level		1 10 10 0 00	1.10 to 1.40	0.90 x V _{CCI}		V
V _{IH}	Input ⁽⁵⁾		1.10 to 3.60	2.70 to 3.60	2.00		\ \
				2.30 to 2.70	1.60		
		Control Pins /OE, T/R (Referenced to V _{CCA})		1.65 to 2.30	0.65 x V _{CCA}		
		(Troforonoda to VCCA)		1.40 to 1.65	0.65 x V _{CCA}		
				1.10 to 1.40	0.90 x V _{CCA}		
	1	1		2.70 to 3.60		0.80	
				2.30 to 2.70		0.70	
		Data Inputs An, Bn		1.65 to 2.30		0.35 x V _{CCI}	
				1.40 to 1.65	\	0.35 x V _{CCI}	
V	LOW Level		1 10 to 2 60	1.10 to 1.40		0.10 x V _{CCI}	V
V _{IL}	Input ⁽⁵⁾		1.10 to 3.60	2.70 to 3.60		0.80	
, A		Control Pins /OE, T/R (Referenced to V _{CCA})		2.30 to 2.70		0.70	
				1.65 to 2.30		0.35 x V _{CCI}	
		(Herereneed to VCCA)		1.40 to 1.65		0.35 x V _{CCI}	
l i				1.10 to 1.40		0.10 x V _{CCI}	
		I _{OH} = -100 μA	1.10 to 3.60	1.10 to 3.60	V _{CC0} - 0.20		
		I _{OH} = -12 mA	2.70	2.70	2.20		
		I _{OH} = -18 mA	3.00	3.00	2.40		
	A.	$I_{OH} = -24 \text{ mA}$	3.00	3.00	2.20		
V	HIGH Level	$I_{OH} = -6 \text{ mA}$	2.30	2.30	2.00		V
V _{OH}	Output ⁽⁶⁾	I _{OH} = -12 mA	2.30	2.30	1.80]
		I _{OH} = -18 mA	2.30	2.30	1.70	1	
		$I_{OH} = -6 \text{ mA}$	1.65	1.65	1.25		
- A		$I_{OH} = -2 \text{ mA}$	1.40	1.40	1.05		
	Y.	$I_{OH} = -0.5 \text{ mA}$	1.10	1.10	0.75 x V _{CC0}		
		$I_{OL} = 100 \mu A$	1.10 to 3.60	1.10 to 3.60		0.20	
		$I_{OL} = 12 \text{ mA}$	2.70	2.70		0.40	
		$I_{OL} = 18 \text{ mA}$	3.00	3.00		0.40	
		I _{OL} = 24 mA	3.00	3.00		0.55	
V_{OL}	LOW Level Output ⁽⁶⁾	$I_{OL} = 12 \text{ mA}$	2.30	2.30		0.40	٧
	Calpat	I _{OL} = 18 mA	2.30	2.30		0.60	
		I _{OL} = 6 mA	1.65	1.65		0.30	
		I _{OL} = 2 mA	1.40	1.40		0.35	
		I _{OL} = 0.5 mA	1.10	1.10		0.30 x V _{CC0}	

Continued on the following page...

Electrical Characteristics

Symbol	Parameter	Conditions	V _{cco} (V)	V _{CCI} (V)	Min.	Max.	Unit
IL	Input Leakage Current, Control Pins	V _I =V _{CCA} or GND	3.60	1.10 to 3.60		±1.0	μА
lass	Power Off	A_n , V_1 or V_0 =0 V to 3.6 V	3.60	0		±10	μΑ
l _{OFF}	Leakage Current	B_n , V_I or $V_O=0$ V to 3.6 V	0	3.60		±10	
	3-State Output	A_n , B_n , $/OE=V_{IH}$	3.60	3.60		±10	μΑ
loz	Leakage $(0 \le V_0 \le 3.6 \text{ V},$	B _n , /OE= Don't Care ⁽⁷⁾	3.60	0		±10	
	V _I =V _{IH} or V _{IL})	A _n , /OE= Don't Care ⁽⁷⁾	0	3.60		±10	
I _{CCA/B}		V _I =V _{CCI} or GND; I _O =0	1.10 to 3.60	1.10 to 3.60		20	μΑ
I _{CCZ}		VI=VCCI OI GIND, IO=0	1.10 to 3.60	1.10 to 3.60		20	
l	Quiescent	V _I =V _{CCA} or GND; I _O =0	1.10 to 3.60	0		-10	
I _{CCA}	Supply Current ⁽⁸⁾	VI=VCCA OF GIND, IO=0	0	1.10 to 3.60		10	
1//		V. V or CND: I- O	0	1.10 to 3.60		-10	
I _{CCB}	/	$V_{I}=V_{CCB}$ or GND; $I_{O}=0$	1.10 to 3.60	0	1	10	
ΔI _{CCA/B}	Increase in I _{CC} per Input; Other Inputs at V _{CC} or GND	V _{IH} =3.0 V	3.60	3.60		500	μА

Notes:

- $$\begin{split} V_{\text{CCI}} &= \text{the } V_{\text{CC}} \text{ associated with the data input under test.} \\ V_{\text{CCO}} &= \text{the } V_{\text{CC}} \text{ associated with the output under test.} \end{split}$$
- Don't care = any valid logic level.
- Reflects current per supply, V_{CCA} or V_{CCB}.

AC Electrical Characteristics

		T _A = -40 to +85°C										
Symbol	Parameter		=3.0 V 3.6 V		=2.3 V 2.7 V		1.65 V .95 V		=1.4 V .6 V		=1.1 V I.3V	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V _{CCA} =3.0	V to 3.6 V											
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns
IPLH, IPHL	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	115
t _{PZH,} t _{PZL}	Output Enable /OE to B	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns
IPZH, IPZL	Output Enable /OE to A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	115
t _{PHZ} , t _{PLZ}	Output Disable /OE to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns
IPHZ, IPLZ	Output Disable /OE to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	115
V _{CCA} =2.3	V to 2.7 V											
	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	
t _{PLH} , t _{PHL}	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0	ns
	Output Enable /OE to B	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	
t _{PZH} , t _{PZL}	Output Enable /OE to A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	ns
	Output Disable /OE to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	
$t_{PHZ,} t_{PLZ}$	Output Disable /OE to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	ns
V _{CCA} =1.6	5 V to 1.95 V								/			
	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	
t _{PLH} , t _{PHL}	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	ns
	Output Enable /OE to B	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	
t _{PZH,} t _{PZL}	Output Enable /OE to A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	ns
	Output Disable /OE to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	
t _{PHZ} , t _{PLZ}	Output Disable /OE to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	- ns

Continued on the following page...

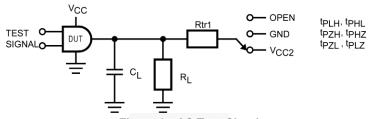
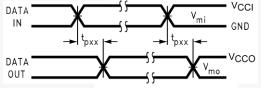
AC Electrical Characteristics

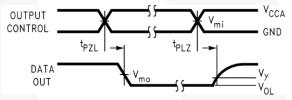
						T _A = -40	to +85°C	;				
Symbol	Parameter		=3.0 V 3.6 V		=2.3 V 2.7 V		1.65 V .95 V		=1.4 V .6 V		=1.1 V 1.3V	Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V _{CCA} =1.4	V to 1.6 V			- 74								
t _{PLH,} t _{PHL}	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	- ns
IPLH, IPHL	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	115
tt_	Output Enable /OE to B	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	- ns
t _{PZH,} t _{PZL}	Output Enable /OE to A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	115
tphz. tplz	Output Disable /OE to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	20
IPHZ, IPLZ	Output Disable /OE to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	ns
V _{CCA} =1.1	V to 1.3 V								V _C			
	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	20
t _{PLH,} t _{PHL}	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	ns
t t	Output Enable /OE to B	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	no
t _{PZH} , t _{PZL}	Output Enable /OE to A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	ns
t t	Output Disable /OE to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ne
t _{PHZ,} t _{PLZ}	Output Disable /OE to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	ns

Capacitance

Symbol	Parameter	Conditions	T _A =+25°C		
Symbol	Farameter	Conditions	Typical	Unit	
C _{IN}	Input Capacitance (Pins O/E, TR)	$V_{\text{CCA}} = V_{\text{CCB}} = 3.3 \text{ V}, V_{\text{I}} = 0 \text{V or } V_{\text{CCA/B}}$	4	pF	
C _{I/O}	Input / Output Capacitance A _n , B _n Ports	$V_{\text{CCA}} = V_{\text{CCB}} = 3.3 \text{ V}, V_{\text{I}} = 0 \text{V or } V_{\text{CCA/B}}$	5	pF	
C_{PD}	Power Dissipation Capacitance	$V_{CCA}=V_{CCB}=3.3 \text{ V}, V_{I}=0\text{V or } V_{CC}, f=10 \text{ MHz}$	20	pF	

AC Loadings and Waveforms


Figure 2. AC Test Circuit

Test	Switch
t _{PLH} ,t _{PHL}	Open
t _{PLZ} ,t _{PZL}	V_{CC0} • 2 at V_{CC0} =3.3 ±0.3 V, 2.5 V ±0.2 V, 1.8 V ±0.15 V, 1.5 V ±0.1 V, 1.2 V ±0.1 V
t _{PHZ} ,t _{PZH}	GND

Table 1. AC Load Table

: abio :: /to =oaa :abio			
V _{cco}	C _L	RL	Rtr1
1.2 V ±0.1 V	15 pF	2 kΩ	2 kΩ
1.5 V ±0.1 V	15 pF	2 kΩ	2 kΩ
1.8 V ±0.15 V	15 pF	2 kΩ	2 kΩ
2.5 V ±0.2 V	15 pF	2 kΩ	2 kΩ
3.3 V ±0.3 V	15 pF	2 kΩ	2 kΩ

Note:

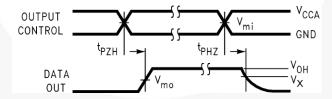

- 9. Input $t_R=t_F=2.0$ ns, 10% to 90%.
- 10. Input $t_{\text{R}}\text{-}t_{\text{F}}\text{=}2.5$ ns, 10% to 90%, at $V_{\text{I}}\text{=}3.0$ V to 3.6 V only.

Figure 3. Waveform for Inverting and Non-Inverting Functions

Note:

- 11. Input $t_R=t_F=2.0$ ns, 10% to 90%.
- 12. Input t_R - t_F =2.5 ns, 10% to 90%, at V_I =3.0 V to 3.6 V only.

Figure 4. 3-State Output Low Enable and Disable for Low Voltage Logic

Notes:

- 13. Input $t_R=t_F=2.0$ ns, 10% to 90%.
- 14. Input t_R - t_F =2.5 ns, 10% to 90%, at V_I =3.0 V to 3.6 V only.

Figure 5. 3-State Output High Enable and Disable for Low Voltage Logic

Symbol	V _{CC}				
	3.3 V ± 0.3 V	2.5 V ± 0.2 V	1.8 V ± 0.15 V	1.5 V ± 0.1 V	1.2 V ± 0.1 V
V _{MI}	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2
V_{MO}	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2
V _X	V _{OH} - 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V	V _{OH} – 0.1 V
V _Y	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V	V _{OL} + 0.1 V	V _{OL} + 0.1 V

Note:

15. For V_{MI} $V_{CCO} = V_{CCA}$ for control pins T/\overline{R} and \overline{OE} or $V_{CCA}/2$.

Physical Dimensions

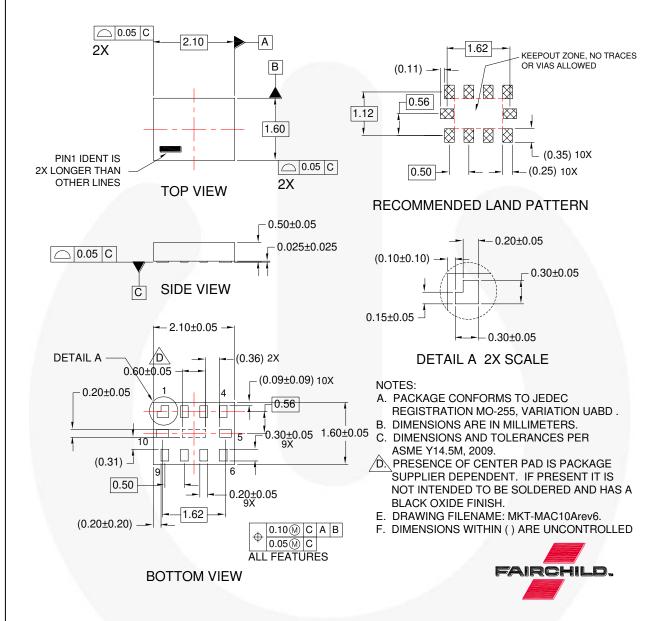


Figure 6. 10-Lead, MicroPak™, JEDEC MO255,1.6 x 2.1 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/MA/MAC10A.pdf.

For current packing container specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-MAC10A.pdf.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ AccuPower™ AX-CAP FRFET® BitSiC™ Global Power Resource GreenBridge™ Green FPS™ Build it Now™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ **CROSSVOLT** GTO™ CTL™ Current Transfer Logic™ IntelliMAX™

DEUXPEED[®] ISOPLANAR™
Dual Cool™ Making Small Speakers Sound Louder
EcoSPARK[®] and Better™

MegaBuck^T

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

OPTOLOGIC®

OPTOPLANAR®

mWSaver

OptoHiT^{TI}

MICROCOUPLER™

EcoSPARK[®]
EfficientMax[™]
ESBC[™]

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series™
FACT[®]
FAST[®]

FACT Quiet Series ™
FACT®
FAST®
FastvCore™
FETBench™
FPS™

PowerTrench[®] PowerXS™ Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

Solutions for You SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO** TinyPower™ TinyPWM™ TinvWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™ UHC Ultra FRFET™ UniFETT **VCX**TM VisualMax™ VoltagePlus™ XSTM

仙童™

SYSTEM STERNER

TinyBoost®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchil Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 168

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative