: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
FXLA2203

Dual-Mode, Dual-SIM-Card Level Translator

Features

- Easy-to-Use "Single Pin" SIM Card Swap Control
- Channel Swap Time: 130ns (Typical)
- Simultaneous Dual-Mode, Dual-SIM Communication
- Host Ports: 1.65 V to 3.6 V Voltage Translation
- Card Ports: 1.65 V to 3.6 V Voltage Translation
- Leverages the Presence of Existing PMIC LDOs
- ISO7816 Compliant
- Power Switch Ron: 0.5Ω (Typical)
- Supports Class B 3V SIM / UIM Cards
- Supports Class C: 1.8 V SIM / UIM Cards
- Non-Preferential Host V_{cc} Power-Up Sequencing
- Activation / Deactivation Timing Compliant per ISO7816-03
- Internal Pull up Resistors for Bi-Directional I/O Pin
- Outputs Switch to 3-State if Host V_{cc} at GND
- Power-Off Protection
- Packaged in 24-Terminal UMLP ($2.5 \mathrm{~mm} \times 3.5 \mathrm{~mm}$)
- Direction Control Not Needed

Applications

- Dual-Mode Dual-SIM Applications
- GSM, CDMA, WCDMA, TDSCDMA CDMA2000, 3G Cellular Phones
- Mobile TV: OMA BCAST

Description

The FXLA2203 allows either two hosts to simultaneously communicate with two Subscriber Identity Modules (SIM), or two User Identity Modules (UIM). Dual Mode refers to the mobile phones that are compatible with more than one form of data transmission or network (such as GSM, CDMA, WCDMA, TDSCDMA, or CDMA2000), resulting in a dual-baseband processor configuration. In a dual-mode application, the FXLA2203 host ports interface directly with the baseband processors (see Figure 9).

The bi-directional I/O open-drain channel features autodirection and internal $10 \mathrm{~K} \Omega$ pull-up resistors. RST and CLK provide unidirectional translation from host to card only.

Either host can swap SIM slots with the assertion of a single control pin: CH_Swap. The typical channel swap time is 130 ns .

The FXLA2203 does not contain internal Low Dropout Regulator (LDOs). Instead, the FXLA2203 architecture incorporates two low-Ron internal power switches for routing existing PMIC (Power Management Integrated Circuit) LDOs to individual SIM slots. This reduces overall system power, leverages existing LDO system resources, and aligns with the philosophy that centralizing LDOs in the PMIC facilitates power management. Since the FXLA2203 does not block the LDO function to the SIM card, existing activation / deactivation timing transparency is maintained between Hosts, PMICs, and SIM cards.

The device allows voltage translation from as high as 3.6 V to as low as 1.65 V . Each port tracks its own port power supply.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FXLA2203UMX	-40 to $85^{\circ} \mathrm{C}$	24-Terminal, $2.5 \mathrm{~mm} \times 3.4 \mathrm{~mm}$ Ultrathin Molded Leadless Package (UMLP), 0.4mm Pitch	Tape and Reel

Block Diagram

Figure 1. Block Diagram

Notes:

1. $\quad \mathrm{V}_{\mathrm{CC}}$ must always be greater than or equal to $(\geq) \mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.
2. Hybrid driver explained in detail in Figure 12 - I/O Pin Functional Diagram.
3. See Table 2 for CH _Swap truth table.

Pin Configuration

24	23	22	21
10	19		
1			18
2			17
3			16
4			15
5			14
6			13
7	8	10	12

Figure 2. Top Through View

Figure 3. Bottom View

Pin Definitions

Pin \#	Name	Signal	Description
1	NC	NC	No Connection
2	VCC1	1	Power Supply 1 Input: Coming from PMIC 1 LDO
3	VCC_Card1	\bigcirc	Power Output for Card Slot 1
4	GND	GND	Ground
5	VCC_Card2	\bigcirc	Power Output for Card Slot 2
6	VCC2	I	Power Supply 2 Input: Coming from PMIC 2 LDO
7	RST_2	0	Reset Output to Card Slot 2
8	I/O_2	I/O	Data I/O for Card Slot 2; Open Drain
9	CLK_2	0	Clock Output to Card Slot 2
10	CLK_H_2	I	Clock Input of Host Interface 2
11	RST_H_2	I	Reset Input of Host Interface 2
12	I/O_H_2	I	Data I/O of Host Interface 2; Open Drain
13	VCC_H_2	Supply	Power Supply of Host Interface 2
14	GND	GND	Ground
15	$V_{\text {cc }}$	Supply	Power Supply of Control Pins: EN and CH_Swap
16	EN	I	GPIO Enable. LOW disables both SIM card slots. HIGH enables both SIM card slots. Connect to V_{Cc} if not used. Default level after power up is LOW.
17	Ch_Swap	I	Channel Swap. "1" host 1 to card slot 1 , host 2 to card slot 2 . " 0 " host 1 to card slot 2 , host 2 to card slot 1 . Connected to V_{Cc} if not used. Default level after power up is LOW.
18	VCC_H_1	Supply	Power Supply of Host Interface 1
19	I/O_H_1	I/O	Data I/O of Host Interface 1; Open Drain
20	RST_H_1	1	Reset Input of Host Interface 1
21	CLK_H_1	1	Clock Input of Host Interface 1
22	CLK_1	0	Clock Output to Card Slot 1
23	I/O_1	I/O	Data I/O for Card Slot 1; Open Drain
24	RST_1	0	Reset Output to Card Slot 1

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Conditions	Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Supply Voltage		$\mathrm{V}_{\text {cc }}$	-0.5	5.0	V
			VCC_H_n, VCCn	-0.5	4.6	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		Host Ports and Card Ports	-0.5	4.6	V
			Control Input (EN and CH_Swap)	-0.5	5.0	
Vo	Output Voltage ${ }^{(4)}$		Output 3-State	-0.5	4.6	V
			Output Active (Host Port)	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	
			Output Active (Card Port)	-0.5	$\mathrm{V}_{\mathrm{cc}}+0.5$	
1 IK	DC Input Diod	de Current	$\mathrm{V}_{1}<0 \mathrm{~V}$		-50	mA
lok	DC Output Diode Current		$\mathrm{V}_{0}<0 \mathrm{~V}$		-50	mA
			$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$		+50	
$\mathrm{loh} / \mathrm{loL}$	DC Output Source / Sink Current ${ }^{(4)}$			-50	+50	mA
Icc	DC $\mathrm{V}_{\text {cc }}$ or Ground Current (per Supply Pin)				± 100	mA
TSTG	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {DISS }}$	Power Dissipation at 5MHz				0.57	W
ESD	Electrostatic Discharge Capability	Human Body Model,	Card Side Pins 3-5, 7-9, 14, 22-24		9	kV
		$\text { JESD22-A114 }{ }^{(5)}$	All Other Pins		3	
		Charged Device Model, JESD22-C101	Card Side Pins 3-5, 7-9, 14, 22-24		2	
			All Other Pins		2	

Notes:

4. Io absolute maximum ratings must be observed.
5. Human Body Model (HBM): $R=1500 \Omega, C=100 \mathrm{pF}$.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Power Supply ${ }^{(6)}$	$\mathrm{V}_{\text {cc }}$	1.65	4.35	V
		VCC_H_n, VCCn	1.65	3.60	V
V_{IN}	Input Voltage ${ }^{(7)}$	Host Port	0	3.6	V
		Card Port	0	3.6	V
Vout	Output Voltage ${ }^{(7)}$	Host Port	0	3.6	V
		Card Port	0	3.6	V
		Host Port I/O Pin	0	VCC_H_n +0.3V	V
		Card Port I/O Pin	0	$\mathrm{VCCn}+0.3 \mathrm{~V}$	V
T_{A}	Operating Temperature, Free Air		-40	+85	${ }^{\circ} \mathrm{C}$
dt/dV	Input Edge Rate	RST and CLK		10	ns/V
Θ_{JA}	Junction-to-Ambient Thermal Resistance			52.1	C/W

Notes:

6. $\quad \mathrm{V}_{\mathrm{CC}}$ must always be equal to, or greater than, $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.
7. All unused inputs and input/outputs must be held at their respective V_{CC} or GND.

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; pins $\mathrm{I} / \mathrm{O} _1, \mathrm{I} / \mathrm{O} _2, \mathrm{I} / \mathrm{O} _\mathrm{H} _1, \mathrm{I} / \mathrm{O} _\mathrm{H} _2$ (open drain).

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {CC_H_n }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{cCn}}(\mathrm{V})$	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{IH} \text { _host }}$	High-Level Input Voltage	Data Inputs of Host Interface	$1.65-3.60$	1.65-3.60	$\begin{gathered} 0.7 \mathrm{x} \\ \mathrm{~V}_{\mathrm{Cc} _\mathrm{H}-\mathrm{n}} \end{gathered}$			V
$\mathrm{V}_{\text {IH_card }}$		Data Inputs of Card Interface	$1.65-3.60$	1.65-3.60	$0.7 \times \mathrm{V}_{\mathrm{CCn}}$			V
$\mathrm{V}_{\text {IL_host }}$	Low-Level Input Voltage	Data Inputs of Host Interface	$1.65-3.60$	1.65-3.60			0.4	V
$\mathrm{V}_{\text {IL_card }}$		Data Input of Card Interface	$1.65-3.60$	1.65-3.60			$\begin{gathered} 0.15 \mathrm{x} \\ \mathrm{~V}_{\mathrm{cCn}} \end{gathered}$	V
$\mathrm{V}_{\text {OH_host }}$	High-Level Output Voltage	$\mathrm{IOH}^{\text {¢ }}=-20 \mu \mathrm{~A}$	$1.65-3.60$	1.65-3.60	$\begin{gathered} 0.7 \mathrm{x} \\ \mathrm{~V} \text { CC_H_n } \end{gathered}$			V
Voh_card		$\mathrm{IOH}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	$1.65-3.60$	1.65-3.60	$0.7 \times \mathrm{V}_{\mathrm{ccn}}$			V
Vol_host	Low-Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$	$1.65-3.60$	1.65-3.60			0.05	V
Vol_card		$\mathrm{l}_{\mathrm{lL}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}$	$1.65-3.60$	1.65-3.60			0.05	V
VoL_host	Low-Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.100 \mathrm{~V} \end{aligned}$	$1.65-3.60$	1.65-3.60			0.15	V
Vol_card		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.100 \mathrm{~V} \end{aligned}$	$1.65-3.60$	1.65-3.60			0.15	V
VoL_host	Low-Level Output Voltage	$\begin{aligned} & \mathrm{loL}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.250 \mathrm{~V} \end{aligned}$	$1.65-3.60$	1.65-3.60			0.3	V
VoL_card		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.250 \mathrm{~V} \end{aligned}$	1.65-3.60	1.65-3.60			0.3	V
loff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V Host and Card Sides	3.60	0			± 1.0	$\mu \mathrm{A}$
loz	3-State Output Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V} \text {, } \\ & \mathrm{EN}=\mathrm{GND} \text {, Host } \\ & \text { and Card Sides } \end{aligned}$	3.60	3.60			± 1.0	$\mu \mathrm{A}$
loz	3-State Output Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{EN}=1 \text {, Host and } \\ & \text { Card Sides } \end{aligned}$	0	3.60			± 1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {pull_up }}$	Internal Pull-Up Resistor		$1.65-3.60$	1.65-3.60	9	10	11	K Ω

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; pins EN, CH_Swap.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Min.	Max.	Unit
VIL	Low-Level Input Voltage		3.60		0.65	V
			1.80		0.45	V
V_{IH}	High-Level Input Voltage		3.60	1.2		V
			1.80	0.9		V
IL	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$ or GND, I/O Floating	1.65-3.60		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Increase in Icc per Pin	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	3.60		12	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$	1.80		10	$\mu \mathrm{A}$

DC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; pins RST_1, RST_2, RST_H_1, RST_H_2, CLK_1, CLK_2, CLK_H_1, CLK_H_2.

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {CC_H_n }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{ccn}}(\mathrm{V})$	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		$1.65-3.60$	1.65-3.60			$\begin{gathered} 0.35 \mathrm{x} \\ \mathrm{~V}_{\mathrm{CC} _\mathrm{H} _\mathrm{n}} \end{gathered}$	V
$\mathrm{V}_{\text {IH }}$	High-Level Input Voltage		$1.65-3.60$	1.65-3.60	$\begin{gathered} 0.65 \mathrm{x} \\ \mathrm{~V}_{\mathrm{CC} \text { _H_n }} \end{gathered}$			V
Vol	Low-Level Output Voltage	$\mathrm{l}_{\mathrm{oL}}=20 \mu \mathrm{~A}$	$1.65-3.60$	1.65-3.60			$\begin{aligned} & 0.12 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{CCn}} \end{aligned}$	V
V_{OH}	High-Level Output Voltage	$\mathrm{lон}^{\prime}=-20 \mu \mathrm{~A}$	$1.65-3.60$	1.65-3.60	$\begin{gathered} 0.80 x \\ V_{\mathrm{cCn}} \end{gathered}$			V
1	Input Leakage Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or GND	$1.65-3.60$	3.60			± 1	$\mu \mathrm{A}$
loff	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V	3.60	0			± 1	$\mu \mathrm{A}$
loz	3-State Output Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{EN}=\mathrm{GND} \end{aligned}$	3.60	3.60			± 1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{EN}=1 \end{aligned}$	0	3.60			± 1	
Icc	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0, \mathrm{EN}=\mathrm{V}_{\mathrm{Cc}}, \\ & \mathrm{I} / \mathrm{O} \text { Floating } \end{aligned}$	$1.65-3.60$	1.65-3.60			3	$\mu \mathrm{A}$
Iccz	Power-Down Supply Current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}} \text { or GND; } \\ & \mathrm{l}_{\mathrm{O}}=0, \mathrm{EN}=\mathrm{GND} \end{aligned}$	$1.65-3.60$	1.65-3.60			3	$\mu \mathrm{A}$
Ronps	Power Switch On Resistance, EN=1	$\mathrm{I}_{\mathrm{ON}}=50 \mathrm{~mA}$, VCCn to VCC_Cardn	$1.65-3.60$	1.65-3.60		0.5	0.8	Ω
Rofps	Power Switch OFF Resistance, EN=0	CH_Swap=0 and $1, \bar{V}_{\mathrm{CC} 1 / 2}=3.3 \mathrm{~V}$	$1.65-3.60$	1.80-3.60		50		$\mathrm{M} \Omega$

AC Characteristics

Card Port (RST, CLK)

Unless otherwise specified, output load: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 3.60 V .

Symbol	Parameter	Typ.	Max.	Unit
t_{r}	Output Rise Time Card Port ${ }^{(8,10)}$	1	5	ns
t_{f}	Output Fall Time Card Port ${ }^{(9,10)}$	1	5	ns

Notes:

8. See Figure 6.
9. See Figure 7.
10. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ guaranteed by characterization; not production tested.

Host and Card Port (I/O Only)

Unless otherwise specified, output load: $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$, and open-drain outputs; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CCn}}=1.65 \mathrm{~V}$ to 3.60 V ; and $\mathrm{V}_{\mathrm{CC}} \mathrm{H} _\mathrm{n}=1.65 \mathrm{~V}$ to 3.60 V .

Symbol	Conditions	Parameter	Typ.	Max.	Unit
$\mathrm{tr}^{(11,13)}$	Open Drain Inputs with $500 \mu \mathrm{~A} \mathrm{I}_{\text {SINK }}{ }^{(13)}$	Output Rise Time Card Port (10\%-90\%)	200	500	ns
$\mathrm{tf}^{(12,13)}$		Output Fall Time Card Port (90\%-10\%)	2.5	4.0	ns
$\mathrm{tr}^{(11,13)}$		Output Rise Time Host Port (10\%-90\%)	200	500	ns
$\mathrm{tf}^{(12,13)}$		Output Fall Time Host Port (90\%-10\%)	2	3	ns

Notes:

11. See Figure 6.
12. See Figure 7.
13. $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ guaranteed by characterization; not production tested.
$\mathrm{V}_{\text {cc_H_n }}=1.65 \mathrm{~V}$ to $3.60 \mathrm{~V}^{(6)}$
Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CCn}}=1.65 \mathrm{~V}$ to 3.60 V .

Symbol	CH_Swap	Direction	Path	Typ.	Max.	Unit
$\mathrm{t}_{\text {swap }}$	HL, LH	Host \rightarrow Card	RST, CLK, I/O and Power Switches	130	400	ns

Notes:

14.
15.
16. The power switch swap time assumes no decoupling capacitors on the VCC_Card pins.
17. $\mathrm{t}_{\text {swap }}$ is the time required for the $\mathrm{CH}_{\text {_S }}$ Swap pin to swap host to SIM slot connections.
18. The I/O pin swap time assumes a push / pull driver; otherwise, the rise time (RC time constant) of an open-drain driver masks the actual I/O pin switch time.

Maximum Frequency ${ }^{(19)}$

Unless otherwise specified, CLK (Host to Card), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and card port $\mathrm{V}_{\mathrm{CCn}}=1.65 \mathrm{~V}$ to 3.60 V .

Host Port: VCC_H_n	CH_Swap	Minimum	Unit
1.6 V to 3.6 V	1	30	MHz
	0	30	

Note:

19. Maximum frequency is guaranteed but not tested.

Power Dissipation Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical	Unit
C_{pd}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC} _\mathrm{H} _}=\mathrm{V}_{\mathrm{CCn}}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}, CH_{-}Swap $=1, \mathrm{CLK} 1$ and CLK2 Switching at 5 MHz	23	pF

Test Diagrams

Figure 4. Test Circuit

Table 1. AC Test Conditions

$\mathbf{V}_{\text {cco }}$	$\mathbf{C 1}$	R1
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	30 pF	$1 \mathrm{M} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	$1 \mathrm{M} \Omega$
$3.3 \pm 0.3 \mathrm{~V}$	30 pF	$1 \mathrm{M} \Omega$

Figure 5. Input Edge Rates for RST and CLK Notes:
20. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns}, 10 \%$ to 90% at $\mathrm{V}_{\mathrm{l}}=2.5 \mathrm{~V}$.
21. Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90% at $\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$.

Figure 7. Active Output Fall Time

Figure 6. Active Output Rise Time

Maximum Data Rate, $f=1 / \mathrm{t} \mathrm{W}$

Figure 8. Maximum Data Rate

Application Information

Figure 9 illustrates an FXLA2203 used in a dual-mode / dual-SIM application. The FXLA2203 does not contain any internal LDOs. Instead, the FXLA2203 architecture
incorporates two low-Ron internal power switches for routing existing Power Management Integrated Circuit (PMIC) LDOs to individual SIM slot VCC pins.

Figure 9. Typical Dual-Mode Application

CH_Swap Truth Table

CH_Swap controls simultaneous communication between Host 1 or Host 2, and either SIM Card according to Table 2 -
Dual-Mode, Dual-SIM Truth Table. Either host can swap SIM slots (130ns typical) with the assertion of the

CH_Swap pin. This simple solution is faster and less complicated than SPI or $\mathrm{I}^{2} \mathrm{C}$ communication protocols.

$\mathrm{CH}_{\text {_Swap }}=0$

Figure 10. CH_Swap

Table 2. Dual-Mode, Dual-SIM Truth Table

Enable	CH_SWAP	Configuration
1	1	Host $1 \rightarrow$ SIM Slot 1
1	1	Host 2 \rightarrow SIM Slot 2
1	0	Host 1 \rightarrow SIM Slot 2
1	0	Host 2 \rightarrow SIM Slot 1

Voltage Translation Description

The FXLA2203 provides full voltage translation, or level shifting, from $1.65 \mathrm{~V}-3.6 \mathrm{~V}$ between Host 1 or Host 2 and either SIM card (according to Table 3). The host sides reference $\mathrm{V}_{\mathrm{CC} \text { _H_1 }}$ and $\mathrm{V}_{\mathrm{CC} \text { _H_2 }}$, respectively, while each SIM slot references the external PMIC LDO voltage level determined by the CH_Swap pin. This

CH_Swap $=1$
architecture offers a flexible solution for problematic V_{cc} domain disagreements. For example, if Host 1 operates at 1.65 V and Host 2 operates at 2.5 V , while slot 1 is populated with a 3.0 V SIM card and slot 2 is populated with a 1.8 V SIM card, the FXLA2203 provides seamless voltage translation across all four V_{CC} domains.

CH_Swap $=0$
Figure 11. Voltage Translation

Table 3. Translation Truth Table

Enable	CH_Swap	SIM Slot 1 Voltage Levels	SIM Slot 2 Voltage Levels
1	1	PMIC LDO1 / $\mathrm{V}_{\mathrm{CC} 1}$	PMIC LDO2 / $\mathrm{V}_{\mathrm{CC} 2}$
1	0	PMIC LDO2 / $\mathrm{V}_{\mathrm{CC} 2}$	PMIC LDO1 / $\mathrm{V}_{\mathrm{CC} 1}$

Note:

22. V_{CC} must always be greater than or equal to $(\geq) \mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.

I/O Pin Function

The ISO7816-3 specification, which governs the SIM card physical layer requirements, identifies the I/O pin as a bi-directional open-drain pin. To provide autodirection for the I/O pin, the FXLA2203 architecture (Figure 12) implements two series NpassGates and two dynamic drivers. This hybrid architecture is highly beneficial in a SIM card interface.

Figure 12. I/O Pin Functional Diagram
The hybrid bi-directional I/O channel contains two series NpassGates and two dynamic drivers. This architecture allows auto-direction functionality without the need for a direction pin from either the host or the SIM card and accomplishes an automatic change in direction without the presence of an edge.

Due to open-drain technology, hosts and SIM cards do not use push-pull drivers on the I/O pin. Logic LOWs are pulled down ($\mathrm{l}_{\text {sink }}$), while logic HIGHs are "let go" (3state). During a logic LOW on the I/O pin, both series NpassGates are turned on and act like a very low resistive short between the host and the SIM card. When the host or card lets go of a previously held LOW on the I/O pin, the rise time is largely determined by the $R C$ time constant, where R is the internal pull-up resistor (10K Ω) and C is the I/O signal trace capacitance. The FXLA2203 acts as a very low resistive short between the host and SIM card (during a LOW) until either of the port's $\mathrm{V}_{\mathrm{cC} / 2}$ thresholds are reached. After the RC time constant has reached the $\mathrm{V}_{\mathrm{CC} / 2}$ threshold of either port, the port's edge detector triggers both dynamic drivers to drive their respective ports in the LOW-to-HIGH (LH) direction, accelerating the rising edge. The resulting rise time resembles the CH 2 waveform (blue) of Figure 13. Effectively, two distinct slew rates appear in the rise time. The first slew rate (slower) is the RC time constant of the I/O signal trace. The second slew rate (faster) is the dynamic driver accelerating edge.
If both the host and card ports of the I/O pin are HIGH, a high-impedance path exists between the host and card ports because both of the series NpassGates are turned off. If a host or SIM card pulls the I/O pin LOW, that device's driver pulls down ($I_{\text {sink }}$) the I/O pin until the HIGH-to-LOW (HL) edge reaches the host or card port's
$\mathrm{V}_{\mathrm{CC} / 2}$ threshold. When either the host or card port threshold is reached, the port's edge detectors trigger both dynamic drivers to drive their ports in the HIGH-toLOW (HL) direction, accelerating the falling edge.

Figure 13.Scope Shot of I/O and Clock Signals CH1: CLK Pin (Yellow), CH2: I/O PIN (Blue) Driven by the FXLA2203

Activation / Deactivation

To ensure the SIM card electrical circuits do not activate before the contacts of the SIM card are mechanically connected, ISO7816-3 2006 mandates the activation sequence of events described in Figure 14. The FXLA2203 provides full transparency to the activation timing between host and SIM card.

Figure 14.Activation Timing (ISO 7816-3 2006)
To ensure the SIM card electrical circuits properly deactivate before the contacts of the SIM card are mechanically connected, ISO7816-3 2006 mandates the sequence of events described in Figure 15 The FXLA2203 provides full transparency to the deactivation timing between host and SIM card.

Figure 15. Deactivation (ISO 7816-3 2006)

Power-Up / Power-Down Sequence
Table 4. Power Supply Pins

Pin	Name	Function
1	VCC	EN and CH_Swap Supply
2	VCC_H_1	Host 1 Supply
3	VCC_H_2	Host 2 Supply
4	VCC1	Power Switch 1 Input
5	VCC2	Power Switch 2 Input

The V_{cc} host power sequencing is non preferential; however, V_{cc} must be higher or equal to $\mathrm{V}_{\mathrm{cc} 1}$ and $\mathrm{V}_{\mathrm{Cc} 2}$. The Enable pin must be LOW while $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$ ramp up to valid supply voltages or ramp down to 0 V .

A pull-up resistor tying enable to ground should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power up or power down. The size of the pull-up resistor is based upon the current sinking capability of the device driving the Enable pin.

Figure 16. Power-Up Sequencing

Notes:

23. $\mathrm{A}=\mathrm{VCC}$ becomes a valid voltage, $\mathrm{EN}=\mathrm{LOW}$.
24. $B=V C C 1, V C C 2$, and VCC_H_n become valid voltages, EN=LOW.
25. C=FXLA2203 enabled (EN goes HIGH), ready for activation (ISO7816-3).

Recommended power-up sequence (see Figure 16):

1. Apply power to VCC.
2. Assert EN LOW (FXLA2203 disabled).
3. Apply power to VCC1, VCC2, VCC_H_1, and VCC_H_2.
4. Assert EN HIGH (FXLA2203 enabled).
5. Begin activation timing (see Figure 14).

Recommended power-down sequence (see Figure 17):

1. Complete deactivation timing (see Figure 15).
2. Assert EN LOW (FXLA2203 disabled).
3. Ramp down power to VCC1, VCC2, VCC_H_1, and VCC_H_2.
4. Once VCC1 and VCC2 are OFF, ramp down VCC.

Figure 17. Power-Down Sequencing

Notes:

26. A=Disable FXLA2203, bring EN LOW.
27. $B=$ Ramp down VCC1, VCC2, and VCC_H_n.
28. $\mathrm{C}=$ Ramp down VCC once VCC1 and VC $\bar{C} 2$ are off.

Operation Description

Table 5. Power Supply Pins

Pin	Name	Function
6	VCC	EN and CH_Swap Supply
7	VCC_H_1	Host 1 Supply
8	VCC_H_2	Host 2 Supply
9	VCC1	Power Switch 1 Input
10	VCC2	Power Switch 2 Input

The control pins EN and CH_Swap reference Vcc. Vcc can range from 1.65 V to $3.6 \overline{\mathrm{~V}}$ and is independent from the other four power pins; however, V_{cc} must always be higher or equal to VCC1 and VCC2.
VCC_Host_1 and VCC_Host_2 can independently range from 1.65 V to 3.6 V and are the power supply pins for their respective host-side interfaces; including RST, I/O, and CLK.

VCC1 and VCC2 can independently range from 1.65 V to 3.6 V and are the inputs to the internal power switches. VCC1 and VCC2 should be connected to external PMIC LDOs. Depending on the logic state of the CH_Swap and EN control pins, the external LDOs are routed through the two power switches to either VCC_Card1 or VCC_Card2 (see Table 6). Meanwhile, CH _- S wap also routes the host (1 or 2) signal pins; RST, I/O, and CLK to the SIM Slot side (1 or 2). See section "SIM Slot Signals: Active vs. 3-State" for details. The voltage reference of each SIM slot is determined by the LDO voltage assigned to that SIM slot.

RST and CLK are unidirectional pins always going in the SIM slot direction. I/O is a bi-directional, open drain pin. Internal $10 \mathrm{~K} \Omega$ pull-up resistors are provided.

The ISO7816 standard identifies an algorithm that allows a Host device to auto-detect the operating voltage of a SIM card. The algorithm is called "class selection" and the FXLA2203 is 100\% transparent to class selection.

If VCC1 and VCC_H_1 share the same voltage potential; these two pins can be tied together. Likewise,
if VCC2 and VCC_H_2 share the same voltage potential, these two pins can be tied together. Under these conditions, and once CH_Swap has been established, the host can power up or down the SIM card along with the FXLA2203 host side solely by the LDO voltage. This feature is a convenient method for conserving power. Note that V_{cc} must always remain equal to or greater than $\mathrm{V}_{\mathrm{cc} 1}$ and $\mathrm{V}_{\mathrm{cc} 2}$.
The FXLA2203 I/O pins must be driven by open-drain drivers on the host sides and the card sides.

SIM Slot Power Switch Truth Table

If EN=1 and CH_Swap=1; then the V_{Cc} of SIM Slot 1 (VCC_Card_1) tracks the VCC1 voltage (ext. LDO), while the V_{cc} of SIM Slot 2 (VCC_Card_2) tracks the VCC2 voltage (ext. LDO). If $\mathrm{EN}=1$ and $\mathbf{C H}$ Swap $=0$; then the V_{cc} of SIM Slot 1 (VCC_Card_1) tracks the VCC2 voltage (ext. LDO), while the VCC of SIM Slot 2 (VCC_Card_2) tracks the VCC1 voltage (ext. LDO). See Table 7. Note that V_{cc} must be $\geq \mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.

SIM SIot Signal Truth Table

If $\mathrm{EN}=1$ and CH _Swap=1, the Host 1 Input signal pins (CLK_H_1, RST_H_1, and I/O_H_1) are translated to the SIM Slot 1 output signal pins (CLK_1, RST_1, and I/O_1). The VCC1 voltage (ext. LDO) sets the voltage levels of CLK_1, RST_1, and I/O_1. Host 2 input signal pins (CLK_H_2, RST_H_2, and I/O_H_2) are translated to the SIM Slot 2 output signal pins (CLK_2, RST_2, and I/O_2). The VCC2 (ext. LDO) voltage sets the voltage levels of CLK_2, RST_2 and I/O_2.

If $\mathrm{EN}=1$ and $\mathrm{CH} _$Swap $=0$, the Host 1 input signal pins (CLK_H_1, RST_H_1 and I/O_H_1) is translated to the SIM Slot 2 output signal pins (CLK_2, RST_2, and I/O_2). The VCC1 voltage (ext. LDO) sets the voltage levels of CLK_2, RST_2, and I/O_2. Host 2 input signal pins (CLK_H_2, RST_H_2, and I/O_H_2) are translated to the SIM Slot 1 output signal pins (CLK_1, RST_1, and I/O_1). The VCC2 (ext. LDO) voltage sets the voltage levels of CLK_1, RST_1, and I/O_1.

Table 6. Power Switch Truth Table

VCC1	VCC2	EN	CH_Swap	VCC_Card 1	VCC_Card 2
$0 \mathrm{~V}-3.6 \mathrm{~V}$	$0 \mathrm{~V}-3.6 \mathrm{~V}$	1	1	VCC1	VCC2
$0 \mathrm{~V}-3.6 \mathrm{~V}$	$0 \mathrm{~V}-3.6 \mathrm{~V}$	1	0	VCC2	VCC1

Table 7. Signal Truth Table

EN	CH_Swap	SIM SLOT 1	SIM Slot 2
1	1	CLK_H_1, RST_H_1, and I/O_H_1	CLK_H_2, RST_H_2, and I/O_H_2
1	0	CLK_H_2, RST_H_2, and I/O_H_2	CLK_H_1, RST_H_1, and I/O_H_1

SIM Slot Signals: Active vs. 3-State

The individual SIM slot signals (CLK, RST, and I/O) are active only if the appropriate VCCn and VCC_H_n supplies are active ($1.65 \mathrm{~V}-3.6 \mathrm{~V}$).

For example, if EN=1 and CH_Swap is 1 , SIM Slot 1 signals (CLK_1, RST_1, and I/O_1) are active only if VCC1 and VCC H 1 are both active $(1.65 \mathrm{~V}-3.6 \mathrm{~V})$. VCC1 sets the voltage levels of CLK_1, RST_1, and I/O_1. If either VCC1 or VCC_H_1 is below 1.65V, SIM Slot 1 signals (CLK 1, RST 1 , and I/O 1) are high impedance. Likewise, SIM Slot 2 signals (CLK_2, RST_2, and I/O_2) are active only if both VCC2 and VCC_H_2 are active ($1.65 \mathrm{~V}-3.6 \mathrm{~V}$). VCC2 sets the voltage levels of CLK_2, RST_2, and I/O_2.

If EN=1 and CH_Swap is 0, SIM Slot 1 (CLK_1, RST_1, and I/O_1) signals are active only if $\overline{\mathrm{V} C C 2}$ and VCC_H_2 are active ($1.65 \mathrm{~V}-3.6 \mathrm{~V}$). VCC2 sets the voltage levels of CLK_1, RST_1, and I/O_1. Likewise, SIM Slot 2 signals ($\overline{C L K} _2, \bar{R} S T _2$, and I/O_2) are active only if both VCC1 and V $\bar{C} C+H_{1} 1$ are active ($1.65 \mathrm{~V}-3.6 \mathrm{~V}$). VCC1 sets the voltage levels of CLK_2, RST_2, and I/O_2.

For a complete listing of all the possible power switch and signal combinations, see Table 8.

Table 8. Complete Power Switch and Signal Truth Table

Condition	Inputs							Outputs			
	VCC	EN	CH_SWAP	VCC_H_1	VCC_H_2	VCC1	VCC2	$\begin{gathered} \text { CLK_1, } \\ \text { RST_1, } \\ \text { I/O_1 } \end{gathered}$	$\begin{gathered} \hline \text { CLK_2, } \\ \text { RST_2, } \\ \text { I/O_2 } \end{gathered}$	VCC_Card1	VCC_Card2
1	OFF	X	X	X	X	OFF	OFF	Z	Z	OFF	OFF
2	ON	L	X	X	X	X	X	Z	Z	Z	Z
3	ON	H	1	OFF	OFF	OFF	OFF	Z	Z	OFF	OFF
4	ON	H	1	OFF	OFF	ON	OFF	Z	Z	ON	OFF
5	ON	H	1	OFF	OFF	OFF	ON	Z	Z	OFF	ON
6	ON	H	1	OFF	OFF	ON	ON	Z	Z	ON	ON
7	ON	H	1	OFF	ON	OFF	OFF	Z	Z	OFF	OFF
8	ON	H	1	OFF	ON	ON	OFF	Z	Z	ON	OFF
9	ON	H	1	OFF	ON	OFF	ON	Z	A	OFF	ON
10	ON	H	1	OFF	ON	ON	ON	Z	A	ON	ON
11	ON	H	1	ON	OFF	OFF	OFF	Z	Z	OFF	OFF
12	ON	H	1	ON	OFF	ON	OFF	A	Z	ON	OFF
13	ON	H	1	ON	OFF	OFF	ON	Z	Z	OFF	ON
14	ON	H	1	ON	OFF	ON	ON	A	Z	ON	ON
15	ON	H	1	ON	ON	OFF	OFF	Z	Z	OFF	OFF
16	ON	H	1	ON	ON	ON	OFF	A	Z	ON	OFF
17	ON	H	1	ON	ON	OFF	ON	Z	A	OFF	ON
18	ON	H	1	ON	ON	ON	ON	A	A	ON	ON
19	ON	H	0	OFF	OFF	OFF	OFF	Z	Z	OFF	OFF
20	ON	H	0	OFF	OFF	ON	OFF	Z	Z	OFF	ON
21	ON	H	0	OFF	OFF	OFF	ON	Z	Z	ON	OFF
22	ON	H	0	OFF	OFF	ON	ON	Z	Z	ON	ON
23	ON	H	0	OFF	ON	OFF	OFF	Z	Z	OFF	OFF
24	ON	H	0	OFF	ON	ON	OFF	Z	Z	OFF	ON
25	ON	H	0	OFF	ON	OFF	ON	A	Z	ON	OFF
26	ON	H	0	OFF	ON	ON	ON	A	Z	ON	ON
27	ON	H	0	ON	OFF	OFF	OFF	Z	Z	OFF	OFF
28	ON	H	0	ON	OFF	ON	OFF	Z	A	OFF	ON
29	ON	H	0	ON	OFF	OFF	ON	Z	Z	ON	OFF
30	ON	H	0	ON	OFF	ON	ON	Z	A	ON	ON
31	ON	H	0	ON	ON	OFF	OFF	Z	Z	OFF	OFF
32	ON	H	0	ON	ON	ON	OFF	Z	A	OFF	ON
33	ON	H	0	ON	ON	OFF	ON	A	Z	ON	OFF
34	ON	H	0	ON	ON	ON	ON	A	A	ON	ON

Notes:

29. $\mathrm{ON}=1.65 \mathrm{~V}-3.6 \mathrm{~V}$.
30. OFF=Powered down or OV.
31. $X=$ Don't Care.
32. $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\mathrm{CC} 2}$.

Product-Specific Dimensions

Product-Specific Dimensions

Description	Nominal Values (mm)
Overall Height	0.50
PKG Standoff	0.012
Lead Thickness	0.15
Lead Width	0.20

Description	Nominal Values (mm)
Lead Length	0.40
Lead Pitch	0.40
Body Length (X)	2.50
Body Width (Y)	3.40

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

