imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FXLH1T45 Low Voltage 1-Bit Bi-directional Level Translator with Configurable Voltage Supplies and Bushold Data Inputs

Features

- Bi-directional interface between any 2 levels from 1.1V to 3.6V
- Fully configurable: Inputs track V_{CC} level
- Non-preferential power-up sequencing; either V_{CC} may be powered-up first
- Outputs remain in 3-STATE until active V_{CC} level is reached
- Outputs switch to 3-STATE if either V_{CC} is at GND
- Power off protection
- Bushold on data inputs eliminates the need for external pull-up/pull-down resistors
- Control input (T/R) levels are referenced to V_{CCA} voltage
- Packaged in the MicroPak 6 (1.0mm x 1.45mm)
- ESD protections exceeds:
 4kV HBM ESD (per JESD22-A114 & Mil Std 883e 3015.7)
 - 8kV HBM I/O to GND ESD (per JESD22-A114 & Mil Std 883e 3015.7)
 - 1kV CDM ESD (per ESD STM 5.3)
 - 200V MM ESD (per JESD22-A115 & ESD STM5.2)

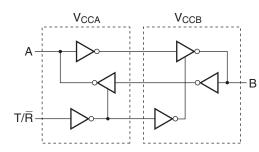
General Description

The FXLH1T45 is a single bit configurable dual-voltage supply translator designed for both uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. The A port tracks the V_{CCA} level, and the B port tracks the V_{CCB} level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

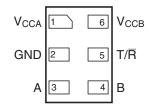
The device remains in 3-STATE until both V_{CC}s reach active levels allowing either V_{CC} to be powered-up first. Internal power down control circuits place the device in 3-STATE if either V_{CC} is removed.

The Transmit/Receive (T/ $\overline{R})$ input determines the direction of data flow through the device. The FXLH1T45 is designed so that the control pin (T/ \overline{R}) is supplied by V_{CCA}.

Ordering Information


Order Number	Package Number	Pb-Free	Package Description	Supplied As
FXLH1T45L6X	MAC06A	Yes	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

FXLH1T45 Low Voltage 1-Bit Bi-directional Level Translator with Configurable Voltage Supplies and Bushold Data Inputs


April 2007

MicroPak[™] is a trademark of Fairchild Semiconductor Corporation.

Functional Diagram

Connection Diagram

(Top Through View)

Pin Assignment

Pin Number	Terminal Name
1	V _{CCA}
2	GND
3	A
4	В
5	T/R
6	V _{CCB}

Pin Descriptions

Pin Names	Description						
T/R	Transmit/Receive Input						
A	Side A Input or Output						
В	Side B Input or Output						
V _{CCA}	Side A Power Supply						
V _{CCB}	Side B Power Supply						

Function Table

Inputs (T/R)	Outputs
L	Bus B Data to Bus A
Н	Bus A Data to Bus B

H = HIGH Logic Level

L = LOW Logic Level

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0V, outputs are in a HIGH-Impedance state. To ensure that bus contention, excessive currents, or oscillations do not occur, a proper power-up sequence is recommended.

The recommended power-up sequence is the following:

- 1. Apply power to either V_{CC} .
- Apply power to the T/R input (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
- 3. Apply power to other $\ensuremath{\mathsf{V}_{\mathsf{CC}}}$.

The recommended power-down sequence is the follow-ing:

- 1. Remove power from either V_{CC} .
- 2. Remove power from other V_{CC} .

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CCA} , V _{CCB}	Supply Voltage	–0.5V to +4.6V
VI	DC Input Voltage	
	I/O Port A	–0.5V to +4.6V
	I/O Port B	–0.5V to +4.6V
	Control Input (T/R)	–0.5V to +4.6V
Vo	Output Voltage ⁽¹⁾	
	Outputs 3-STATE	-0.5V to +4.6V
	Outputs Active (A _n)	-0.5V to V _{CCA} + 0.5V
	Outputs Active (B _n)	$-0.5V$ to $V_{CCB} + 0.5V$
I _{IK}	DC Input Diode Current @ V _I < 0V	–50mA
Ι _{ΟΚ}	DC Output Diode Current @	
	V _O < 0V	–50mA
	$V_{O} > V_{CC}$	+50mA
I _{OH} / I _{OL}	DC Output Source/Sink Current	-50mA / +50mA
I _{CC}	DC V _{CC} or Ground Current per Supply Pin	±100mA
T _{STG}	Storage Temperature Range	-65°C to +150°C

Recommended Operating Conditions⁽²⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CCA} or V_{CCB}	Power Supply Operating	1.1V to 3.6V
	Input Voltage	
	Port A	0.0V to 3.6V
	Port B	0.0V to 3.6V
	Control Input (T/R)	0.0V to V _{CCA}
	Output Current in I _{OH} /I _{OL} with V _{CC @}	
	3.0V to 3.6V	±24mA
	2.3V to 2.7V	±18mA
	1.65V to 1.95V	±6mA
	1.4V to 1.65V	±2mA
	1.1V to 1.4V	±0.5mA
T _A	Free Air Operating Temperature	−40°C to +85°C
$\Delta t/\Delta V$	Maximum Input Edge Rate V _{CCA/B} = 1.1V to 3.6V	10ns/V

Notes:

1. $I_{\rm O}$ Absolute Maximum Rating must be observed.

2. All unused inputs and I/O pins must be held at $V_{CCI}\xspace$ or GND.

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min.	Тур.	Max.	Units	
V _{IH}	High Level Input	Data Inputs A _n , B _n	2.7–3.6	1.1–3.6	2.0	_	-	V	
	Voltage ⁽³⁾		2.3–2.7	-	1.6	_	_	1	
			1.65-2.3	-	0.65 x V _{CCI}	_	-	1	
			1.4-1.65		0.65 x V _{CCI}	_	-	1	
			1.1–1.4		0.9 x V _{CCI}	-	-	1	
		Control Pin T/R	2.7–3.6	1.1–3.6	2.0	-	-	1	
		(Referenced to V _{CCA})	2.3–2.7		1.6	_	-	1	
			1.65-2.3		0.65 x V _{CCA}	_	-	1	
			1.4-1.65		0.65 x V _{CCA}	_	-	1	
			1.1–1.4		0.9 x V _{CCA}	-	-	1	
V _{IL}	Low Level Input	Data Inputs A _n , B _n	2.7–3.6	1.1–3.6	_	-	0.8	V	
	Voltage ⁽³⁾		2.3–2.7		_	-	0.7	1	
			1.65-2.3		_	-	0.35 x V _{CCI}	1	
			1.4-1.65		_	_	0.35 x V _{CCI}	1	
			1.1–1.4		_	_	0.1 x V _{CCI}		
		Control Pin T/R	2.7–3.6	1.1–3.6	_	-	0.8	1	
		(Referenced to V _{CCA})	2.3–2.7	1	_	-	0.7		
			1.65-2.3		_	-	0.35 x V _{CCA}	1	
			1.4-1.65	-	_	-	0.35 x V _{CCA}		
			1.1–1.4		_	-	0.1 x V _{CCA}	1	
V _{OH}	High Level Output	I _{OH} = -100μA	1.1–3.6	1.1–3.6	V _{CC0} -0.2	_	-	V	
	Voltage ⁽⁴⁾	$I_{OH} = -12mA$	2.7	2.7	2.2	_	-	1	
		$I_{OH} = -18 \text{mA}$	3.0	3.0	2.4	_	-	1	
		$I_{OH} = -24mA$	3.0	3.0	2.2	-	-]	
		I _{OH} = -6mA	2.3	2.3	2.0	_	-]	
		$I_{OH} = -12mA$	2.3	2.3	1.8	-	-	1	
		I _{OH} = -18mA	2.3	2.3	1.7	-	-	1	
		I _{OH} = -6mA	1.65	1.65	1.25	-	-	1	
		I _{OH} = -2mA	1.4	1.4	1.05	_	-	1	
		I _{OH} = -0.5mA	1.1	1.1	0.75 x V _{CC0}	-	-]	
V _{OL}	Low Level Output	$I_{OL} = 100 \mu A$	1.1–3.6	1.1–3.6	-	-	0.2	V	
	Voltage ⁽⁴⁾	$I_{OL} = 12mA$	2.7	2.7	-	-	0.4		
		I _{OL} = 18mA	3.0	3.0	-	-	0.4]	
		$I_{OL} = 24mA$	3.0	3.0	-	-	0.55		
		I _{OL} =12mA	2.3	2.3	-	-	0.4		
		I _{OL} = 18mA	2.3	2.3	-	_	0.6		
		I _{OL} = 6mA	1.65	1.65	-	_	0.3		
		I _{OL} = 2mA 1.4 1.4		0.35]				
		$I_{OL} = 0.5 \text{mA}$	1.1	1.1	-	-	0.3 x V _{CC0}]	
Ι	Input Leakage Current Control Pins	$V_I = V_{CCA}$ or GND	1.1–3.6	3.6	-	_	±1.0	μA	

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min.	Тур.	Max.	Unit
I _{I(HOLD)}	Bushold Input	V _{IN} = 0.8	3.0	3.0	75.0	-	-	μΑ
	Minimum Drive Current	V _{IN} = 2.0	3.0	3.0	-75.0	-	_	
	Current	V _{IN} = 0.7	2.3	2.3	45.0	-	_	
		V _{IN} = 1.6	2.3	2.3	-45.0	-	_	
		V _{IN} = 0.57	1.65	1.65	25.0	-	_	
		V _{IN} = 1.07	1.65	1.65	-25.0	-	-	
		V _{IN} = 0.49	1.4	1.4	11.0	-	_	
		V _{IN} = 0.91	1.4	1.4	-11.0	-	_	
		V _{IN} = 0.11	1.1	1.1	_	4.0	_	
		V _{IN} = 0.99	1.1	1.1	_	-4.0	_	
I _{I(OD)}	Bushold Input	(5)	3.6	3.6	450	-	_	μA
	Over-Drive Current-to-Change State	(6)	3.6	3.6	-450	-	_	
		(5)	2.7	2.7	300	-	_	
		(6)	2.7	2.7	-300	-	_	
		(5)	1.95	1.95	200	-	_	
		(6)	1.95	1.95	-200	-	_	
		(5)	1.6	1.6	120	-	_	
		(6)	1.6	1.6	-120	-	-	
		(5)	1.4	1.4	80.0	-	_]
		(6)	1.4	1.4	-80.0	-	_	
I _{OFF}	Power Off Leakage Current		0	3.6	-	-	±10.0	μA
		$B_n, V_{CCB} = V_{CCI},$ $V_I = 0V \text{ to } 3.6V$	0	3.6	-	-	±10.0	
I _{OZ}	3-STATE Output Leakage		0	3.6	-	-	±10.0	μA
		$B_n, V_{CCB} = V_{CCO}, V_O = 0V \text{ or } 3.6V$	0	3.6	-	-	±10.0	
I _{CCA/B}	Quiescent Supply Current ⁽⁷⁾	$V_I = V_{CCI}$ or GND; $I_O = 0$	1.1–3.6	1.1–3.6	-	-	20.0	μA
I _{CCA}	Quiescent Supply	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	0	1.1–3.6	_	-	-10.0	μA
	Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$	1.1–3.6	0	_	-	10.0	μA
I _{CCB}	Quiescent Supply	$V_{I} = V_{CCB}$ or GND; $I_{O} = 0$	1.1–3.6	0	_	-	-10.0	μA
	Current	$V_{I} = V_{CCB}$ or GND; $I_{O} = 0$	0	1.1–3.6	_	-	10.0	μA
$\Delta I_{CCA/B}$	Increase in I_{CC} per Input; Other Inputs at V_{CC} or GND	V _{IH} = 3.0	3.6	3.6	-	-	500	μΑ

DC Electrical Characteristics (Continued)

Notes:

- 3. V_{CCI} = the V_{CC} associated with the data input under test.
- 4. V_{CCO} = the V_{CC} associated with the output under test.
- 5. An external driver must source at least the specified current to switch LOW-to-HIGH.
- 6. An external driver must source at least the specified current to switch HIGH-to-LOW.
- 7. Reflects current per supply, V_{CCA} or $V_{CCB}.$

AC Electrical Characteristics

$V_{CCA} = 3.0V$ to 3.6V

					TA	= −40°0	C to +8	5°C				
			V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	
t _{PZH} , t _{PZL} ⁽⁸⁾	Output Enable T/\overline{R} to B	0.4	7.2	0.5	7.6	0.7	9.1	0.8	10.5	1.6	25.7	ns
	Output Enable T/\overline{R} to A	0.4	7.3	0.4	7.8	1.0	8.8	2.0	10.5	2.8	30.0	
t _{PHZ} , t _{PLZ}	Output Disable T/\overline{R} to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns
	Output Disable T/\overline{R} to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	

$V_{CCA} = 2.3V$ to 2.7V

					TA	= −40°0	C to +8	5°C				
		V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0	
t _{PZH} , t _{PZL} ⁽⁸⁾	Output Enable T/\overline{R} to B	0.4	7.8	0.6	8.2	0.7	9.6	1.0	10.9	1.6	26.0	ns
	Output Enable T/\overline{R} to A	0.5	8.0	0.6	8.5	1.2	9.3	2.0	11.5	3.0	24.0	
t _{PHZ} , t _{PLZ}	Output Disable T/\overline{R} to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns
	Output Disable T/\overline{R} to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	

V_{CCA} = 1.65V to 1.95V

					TA	= −40° (C to +8	5°C				
			V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	
t _{PZH} , t _{PZL} ⁽⁸⁾	Output Enable T/\overline{R} to B	0.8	9.0	1.0	9.5	1.3	10.7	1.4	12.1	2.0	27.0	ns
	Output Enable T/\overline{R} to A	0.7	10.5	0.7	10.8	1.6	10.9	2.5	13.0	3.2	25.0	
t _{PHZ} , t _{PLZ}	Output Disable T/\overline{R} to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	ns
	Output Disable T/\overline{R} to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	

AC Electrical Characteristics (Continued)

V_{CCA} = 1.4V to 1.6V

					TA	= −40°0	C to +8	5°C				
			св = о 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		св = о 1.6V	V _{CCB} = 1.1V to 1.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	
t _{PZH} , t _{PZL} ⁽⁸⁾	Output Enable T/\overline{R} to B	1.5	10.3	1.5	10.8	2.0	12.0	2.0	13.3	2.5	28.0	ns
	Output Enable T/\overline{R} to A	1.0	12.9	1.2	13.1	1.8	13.3	2.5	14.8	3.3	27.5	
t _{PHZ} , t _{PLZ}	Output Disable T/\overline{R} to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns
	Output Disable T/\overline{R} to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	

$V_{CCA} = 1.1V$ to 1.3V

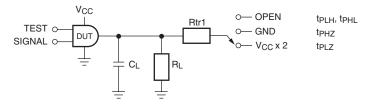
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$									
		V _{CC} 3.0V t	с _в = о 3.6V		св = o 2.7V		°B ⁼ V to 5V		св = о 1.6V		св = о 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	
t _{PZH} , t _{PZL} ⁽⁸⁾	Output Enable T/\overline{R} to B	2.8	28.0	3.0	19.0	3.2	20.0	3.3	21.5	4.0	36.0	ns
	Output Enable T/\overline{R} to A	2.4	37.0	2.1	29.0	2.5	30.0	3.5	32.0	4.0	44.0	
t _{PHZ} , t _{PLZ}	Output Disable T/\overline{R} to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns
	Output Disable T/\overline{R} to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	

Note:

8. The enable time, t_{PZH} or t_{PZL}, is the time for the FXLH1T45 to return to active operation after a direction change. The enable time specifies the worst-case delay from the time the T/R pin is switched until a valid output signal is expected. For example, to change direction to B-to-A operation, the T/R pin is switched from HIGH-to-LOW. The enable time for this case is found by adding the disable time for T/R to B to the propagation delay for B to A. The formulas for calculating enable times are the following:

 t_{PZH} (T/ \overline{R} to A) = t_{PLZ} (T/ \overline{R} to B) + t_{PLH} (B to A)

 t_{PZL} (T/ \overline{R} to A) = t_{PHZ} (T/ \overline{R} to B) + t_{PHL} (B to A)

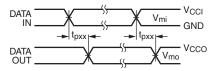

 t_{PZH} (T/ \overline{R} to B) = t_{PLZ} (T/ \overline{R} to A) + t_{PLH} (A to B)

 t_{PZL} (T/ \overline{R} to B) = t_{PHZ} (T/ \overline{R} to A) + t_{PHL} (A to B)

Capacitance

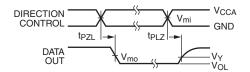
			$T_A = +25^{\circ}C$	
Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance Control Pin (T/\overline{R})	V_{CCA} = V_{CCB} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	4.0	pF
C _{I/O}	Input/Output Capacitance A _n , B _n Ports	V_{CCA} = V_{CCB} = 3.3V, V_{I} = 0V or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	$\label{eq:V_CCA} \begin{split} V_{CCA} &= V_{CCB} = 3.3 \text{V}, \ \text{V}_{I} = 0 \text{V or } \text{V}_{CC}, \\ \text{F} &= 10 \text{MHz} \end{split}$	20.0	pF

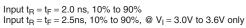
AC Loading and Waveforms

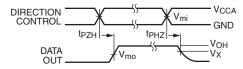


Test	Switch
t _{PLH} , t _{PHL}	OPEN
t _{PLZ}	$ \begin{array}{l} V_{CCO} \ x \ 2 \ at \ V_{CCO} = 3.3 \pm 0.3 V, \ 2.5 V \pm 0.2 V, \\ 1.8 V \pm 0.15 V, \ 1.5 V \pm 0.1 V, \ 1.2 V \pm 0.1 V \end{array} $
t _{PHZ}	GND

Figure 1. AC Test Circuit


AC Load Table


V _{CCO} C _L		RL	Rtr1
$1.2V\pm0.1V$	15pF	2kΩ	2kΩ
$1.5V \pm 0.1V$	15pF	2kΩ	2kΩ
1.8V ± 0.15V	15pF	2kΩ	2kΩ
$2.5V\pm0.2V$	15pF	2kΩ	2kΩ
$3.3V \pm 0.3V$	15pF	2kΩ	2kΩ


Input $t_R=t_F=2.0$ ns, 10% to 90% Input $t_R=t_F=2.5$ ns, 10% to 90%, @ V_I=3.0V to 3.6V only

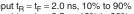

Figure 2. Waveform for Inverting and Non-Inverting Functions

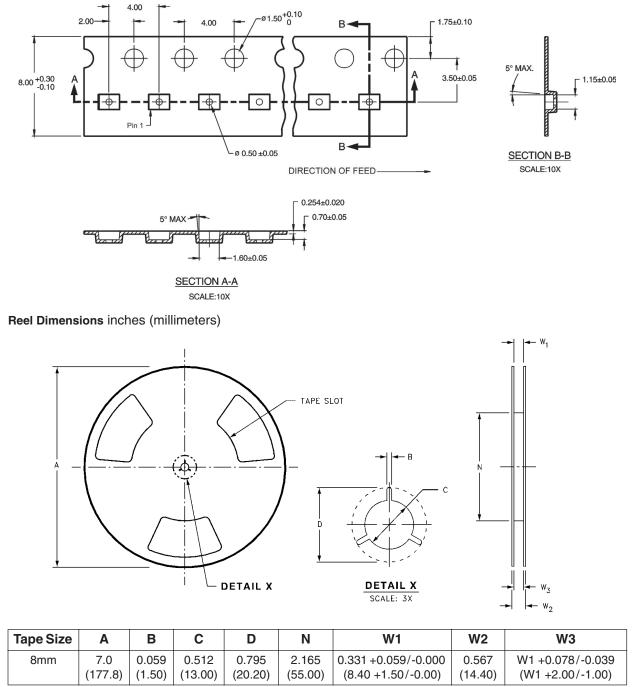
Figure 3. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Input $t_R=t_F=2.0$ ns, 10% to 90% Input $t_R=t_F=2.5$ ns, 10% to 90%, @ V_I=3.0V to 3.6V only

Figure 4. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

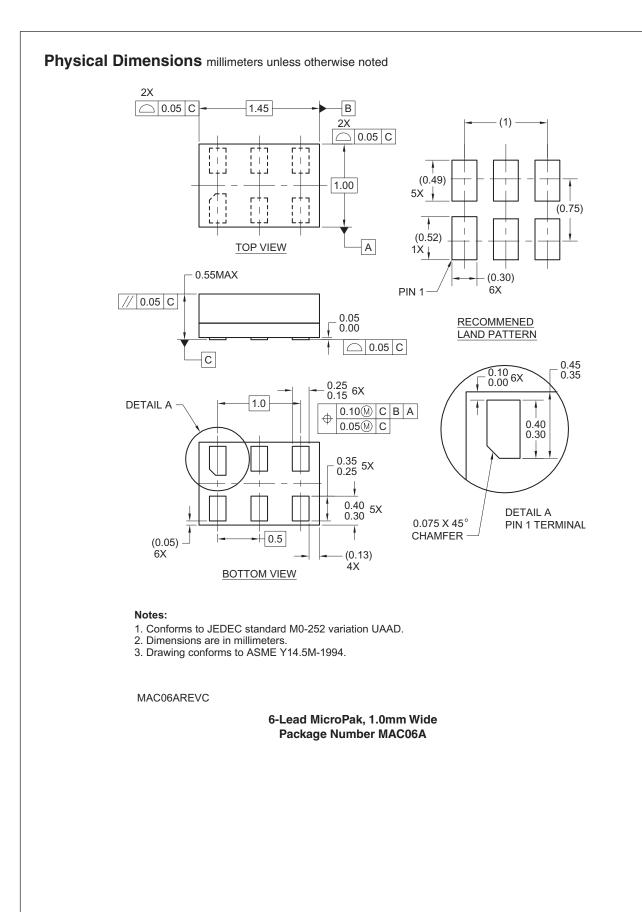
Symbol	V _{cc}						
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$\textbf{1.5V} \pm \textbf{0.1V}$	$\textbf{1.2V} \pm \textbf{0.1V}$		
V _{mi}	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2		
V _{mo}	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2		
V _X	V _{OH} -0.3V	V _{OH} -0.15V	V _{OH} -0.15V	V _{OH} -0.1V	V _{OH} -0.1V		
V _Y	V _{OL} +0.3V	V _{OL} +0.15V	V _{OL} +0.15V	V _{OL} +0.1V	V _{OL} +0.1V		

For V_{mi} : $V_{CCI} = V_{CCA}$ for Control Pin T/ \overline{R} or $V_{CCA}/2$


FXLH1T45 Low Voltage 1-Bit Bi-directional Level Translator with Configurable Voltage Supplies and Bushold Data Inputs

Tape and Reel Specification

Tape Format for MicroPak


Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
L6X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions millimeters

©2006 Fairchild Semiconductor Corporation

FXLH1T45 Rev. 1.0.4

SEMICONDUCTOR

U

FXLH1T45 Low Voltage 1-Bit Bi-directional Level Translator with Configurable Voltage Supplies

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Across the board. Around the
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT™
CTL™
Current Transfer Logic™
DOME™
E ² CMOS™
EcoSPARK [®]
EnSigna™
FACT Quiet Series™
FACT [®] FAST [®]
FASTr™
FPS™ FRFET [®]
GlobalOptoisolator™
GTO™
HiSeC™

i-Lo™ ImpliedDisconnect[™] IntelliMAX™ **ISOPLANAR™** MICROCOUPLER™ MicroPak™ MICROWIRE™ Motion-SPM™ MSX™ MSXPro™ OCX™ OCXPro™ **OPTOLOGIC**[®] **OPTOPLANAR**[®] PACMAN™ PDP-SPM™ POP™ Power220[®] Power247® PowerEdge™ PowerSaver™

Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise® (b[™]

TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TruTranslation™ SerDes™ UHC[®] UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

world.™

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. 126

and Bushold Data Inputs

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC