imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Solid State Relays for Heaters G3PE-Single-phase

Compact, Slim-profile SSRs with Heat Sinks. Models with No Zero Cross for a Wide Range of Applications.

- RoHS compliant.
- Models also available with no zero cross
- Surge pass protection improved surge dielectric strength for output currents. (OMRON testing)
- Compact with a slim profile.
- Mount to DIN Track or with screws.
- Conforms to UL, CSA, and EN standards (TÜV certification).

Refer to Safety Precautions at the end of this document.

Ordering Information

List of Models

Number of phases	Insulation method	Operation indicator	Rated input voltage	Zero cross function	Applicable load *	Model
					15 A, 100 to 240 VAC	G3PE-215B DC12-24
				Yes	25 A, 100 to 240 VAC	G3PE-225B DC12-24
				Tes	35 A, 100 to 240 VAC	G3PE-235B DC12-24
					45 A, 100 to 240 VAC	G3PE-245B DC12-24
		Yes (yellow)			15 A, 100 to 240 VAC	G3PE-215BL DC12-24
				No	25 A, 100 to 240 VAC	G3PE-225BL DC12-24
				NO	35 A, 100 to 240 VAC	G3PE-235BL DC12-24
Single-phase	Phototriac		12 to 24 VDC		45 A, 100 to 240 VAC	G3PE-245BL DC12-24
Single-phase	coupler		12 10 24 VDC		15 A, 200 to 480 VAC	G3PE-515B DC12-24
				Yes	25 A, 200 to 480 VAC	G3PE-525B DC12-24
				163	35 A, 200 to 480 VAC	G3PE-535B DC12-24
					45 A, 200 to 480 VAC	G3PE-545B DC12-24
					15 A, 200 to 480 VAC	G3PE-515BL DC12-24
				No	25 A, 200 to 480 VAC	G3PE-525BL DC12-24
				INU	35 A, 200 to 480 VAC	G3PE-535BL DC12-24
					45 A, 200 to 480 VAC	G3PE-545BL DC12-24

* The applicable load current depends on the ambient temperature. For details, refer to Load Current vs. Ambient Temperature in Engineering Data.

Specifications

Certification

UL508, CSA22.2 No.14, and EN60947-4-3

Ratings

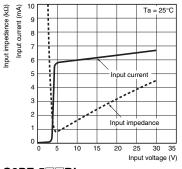
Input (at an Ambient Temperature of 25°C)

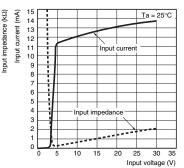
Iter	Rated voltage	Operating voltage	Rated input current	Voltage level					
Model	naleu voltage	range	Rated input current	Must operate voltage	Must release voltage				
G3PE-	- 12 to 24 VDC	9.6 to 30 VDC	7 mA max.	9.6 VDC max.	1.0 VDC max.				
G3PE-DDBL	12 10 24 VDC	9.6 10 30 VDC	15 mA max.	9.6 VDC max.	1.0 VDC mdX.				

Output

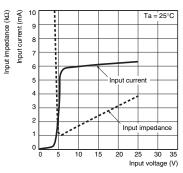
Model	G3PE-215B(L)	G3PE-225B(L)	G3PE-235B(L)	G3PE-245B(L)	G3PE-515B(L)	G3PE-525B(L)	G3PE-535B(L)	G3PE-545B(L)			
Rated load voltage		100 to 240 V/	AC (50/60 Hz)		200 to 480 VAC (50/60 Hz)						
Load voltage range		75 to 264 VA	C (50/60 Hz)		180 to 528 VAC (50/60 Hz)						
Applicable load current	0.1 to 15 A (at 40°C)	0.1 to 25 A (at 40°C)	0.5 to 35 A (at 25°C)	0.5 to 45 A (at 25°C)	0.1 to 15 A (at 40°C)	0.1 to 25 A (at 40°C)	0.5 to 35 A (at 25°C)	0.5 to 45 A (at 25°C)			
Inrush current resistance	150 A (60 Hz, 1 cycle)	220 A (60 Hz, 1 cycle)	44 (60 Hz,		150 A (60 Hz, 1 cycle)	220 A (60 Hz, 1 cycle)		0 A 1 cycle)			
Permissible I ² t (reference value)	121A ² s	260A ² s	1,26	0A²s	128A ² s	1,35	0A²s	6,600A ² s			
Applicable load (resistive load)	3 kW (at 200 VAC)	5 kW (at 200 VAC)	7 kW (at 200 VAC)	9 kW (at 200 VAC)	6 kW (at 400 VAC)	10 kW (at 400 VAC)	14 kW (at 400 VAC)	18 kW (at 400 VAC)			

* The applicable load current depends on the ambient temperature. For details, refer to Load Current vs. Ambient Temperature in Engineering Data on page 1228.

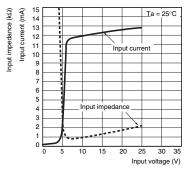

Characteristics

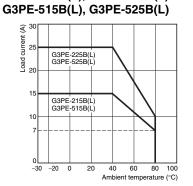

Model	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE					
Item	-215B	-225B	-235B	-245B	-215BL	-225BL	-235BL	-245BL					
Operate time	1/2 of load powe	er source cycle +	1 ms max.		1 ms max.								
Release time	1/2 of load powe	er source cycle +	1 ms max.										
Output ON voltage drop	1.6 V (RMS) ma	6 V (RMS) max.											
Leakage current	10 mA max. (at	mA max. (at 200 VAC)											
Insulation resistance	100 MΩ min. (at	0 MΩ min. (at 500 VDC)											
Dielectric strength	2,500 VAC, 50/6	60 Hz for 1 min											
Vibration resistance	10 to 55 to 10 Hz	z, 0.375-mm sing	le amplitude (0.75	-mm double am	olitude) (Mounted	to DIN track)							
Shock resistance	Destruction: 294	m/s ² (Mounted t	to DIN track)										
Ambient storage temperature	–30 to 100°C (w	ith no icing or co	ndensation)										
Ambient operating temperature	-30 to 80°C (wit	h no icing or con	densation)										
Ambient operating humidity	45% to 85%	45% to 85%											
Weight	Approx. 240 g		Approx. 400 g		Approx. 240 g		Approx. 400 g						

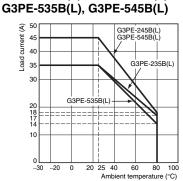
Model	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE	G3PE					
Item	-515B	-525B	-535B	-545B	-515BL	-525BL	-535BL	-545BL					
Operate time	1/2 of load powe	r source cycle +	1 ms max.		1 ms max.								
Release time	1/2 of load powe	er source cycle +	1 ms max.										
Output ON voltage drop	1.8 V (RMS) ma	8 V (RMS) max.											
Leakage current	20 mA max. (at	mA max. (at 480 VAC)											
Insulation resistance	100 M Ω min. (at	500 VDC)											
Dielectric strength	2,500 VAC, 50/6	0 Hz for 1 min											
Vibration resistance	10 to 55 to10 Hz	, 0.375-mm sing	le amplitude (0.75	-mm double amp	litude) (Mounted	to DIN track)							
Shock resistance	Destruction: 294	m/s ² (Mounted t	o DIN track)										
Ambient storage temperature	–30 to 100°C (w	ith no icing or co	ndensation)										
Ambient operating temperature	–30 to 80°C (wit	h no icing or con	densation)										
Ambient operating humidity	45% to 85%												
Weight	Approx. 240 g		Approx. 400 g		Approx. 240 g		Approx. 400 g						


Engineering Data

Input Voltage vs. Input Impedance and Input Voltage vs. Input Current G3PE-2 G3PE-2 BL

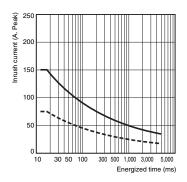


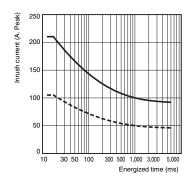

G3PE-5



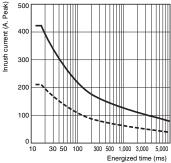
G3PE-5 BL

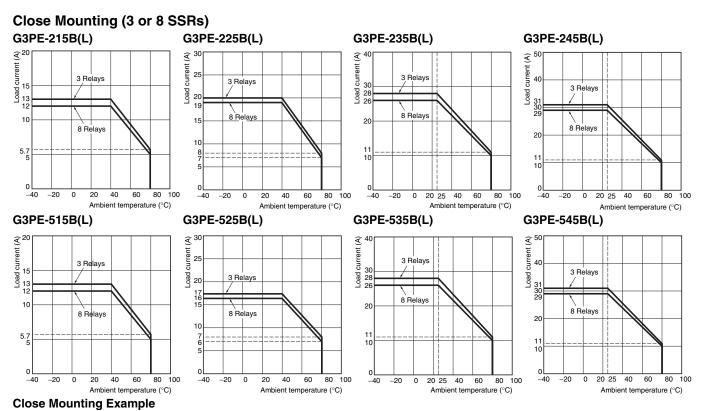
Load Current vs. Ambient Temperature G3PE-235B(L), G3PE-245B(L) G3PE-215B(L), G3PE-225B(L)

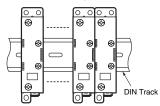




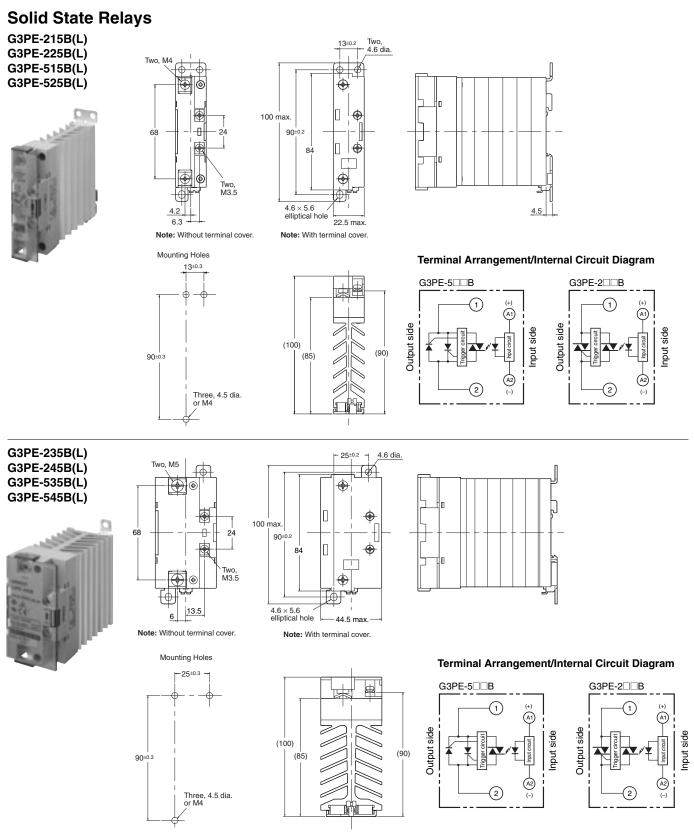
Inrush Current Resistance: Non-repetitive


Keep the inrush current to below the inrush current resistance value (i.e., below the broken line) if it occurs repetitively. G3PE-215B(L), G3PE-515B(L)


G3PE-225B(L), G3PE-525B(L)



G3PE-235B(L), G3PE-245B(L) G3PE-535B(L), G3PE-545B(L) 50




Dimensions

Note: All units are in millimeters unless otherwise indicated.

Solid State Contactors for Heaters G3PE-Three-phase

Compact, Slim-profile SSRs with Heat Sinks. Solid State Contactors for Three-phase **Heaters Reduced Installation Work** with DIN Track Mounting.

- Surge pass protection improved surge dielectric strength for output currents. (OMRON testing)
- Slim design with 3-phase output and built-in heat sinks.
- DIN Track mounting types and screw mounting types are available. All DIN Track mounting types mount to DIN Track (applicable DIN Track: TR35-15Fe (IEC 60715)).
- Conforms to UL, CSA, and EN standards (TÜV certification).

Refer to Safety Precautions at the end of this document.

Ordering Information

List of Models

Models with Built-in Heat Sinks

Number of phases	Insulation method	Operation indicator	Rated input voltage	Zero cross function	Туре	Applicable load *1	Number of poles	Model
						15 A 100 to 040 VAC	3	G3PE-215B-3N DC12-24
						15 A, 100 to 240 VAC	2	G3PE-215B-2N DC12-24
						25 A, 100 to 240 VAC	3	G3PE-225B-3N DC12-24
						25 A, 100 10 240 VAC	2	G3PE-225B-2N DC12-24
						35 A, 100 to 240 VAC	3	G3PE-235B-3N DC12-24
						35 A, 100 10 240 VAC	2	G3PE-235B-2N DC12-24
						45 A, 100 to 240 VAC	3	G3PE-245B-3N DC12-24
					DIN track	45 A, 100 10 240 VAC	2	G3PE-245B-2N DC12-24
					mounting *2	15 A, 200 to 480 VAC	3	G3PE-515B-3N DC12-24
						15 A, 200 10 400 VAC	2	G3PE-515B-2N DC12-24
						25 A, 200 to 480 VAC	3	G3PE-525B-3N DC12-24
							2	G3PE-525B-2N DC12-24
						35 A, 200 to 480 VAC	3	G3PE-535B-3N DC12-24
						33 A, 200 10 400 VAO	2	G3PE-535B-2N DC12-24
						45 A, 200 to 480 VAC	3	G3PE-545B-3N DC12-24
Three-phase	Phototriac	Yes (yellow)	12 to 24 VDC	Yes		43 A, 200 10 400 VAO	2	G3PE-545B-2N DC12-24
rifiee-pliase	coupler		12 10 24 VDC			15 A, 100 to 240 VAC	3	G3PE-215B-3 DC12-24
						13 A, 100 10 240 VAO	2	G3PE-215B-2 DC12-24 *3
						25 A, 100 to 240 VAC	3	G3PE-225B-3 DC12-24
						23 A, 100 10 240 VAO	2	G3PE-225B-2 DC12-24
						35 A, 100 to 240 VAC	3	G3PE-235B-3 DC12-24
						33 A, 100 10 240 VAO	2	G3PE-235B-2 DC12-24
						45 A, 100 to 240 VAC	3	G3PE-245B-3 DC12-24
					Screw	40 %, 100 10 240 77.0	2	G3PE-245B-2 DC12-24
					mounting	15 A, 200 to 480 VAC	3	G3PE-515B-3 DC12-24
						15 A, 200 10 400 VAC	2	G3PE-515B-2 DC12-24 *3
						25 A, 200 to 480 VAC	3	G3PE-525B-3 DC12-24
						20 A, 200 10 400 VAC	2	G3PE-525B-2 DC12-24
						35 A, 200 to 480 VAC	3	G3PE-535B-3 DC12-24
						55 A, 200 10 400 VAC	2	G3PE-535B-2 DC12-24
						45 A, 200 to 480 VAC	3	G3PE-545B-3 DC12-24
						40 A, 200 10 400 VAC	2	G3PE-545B-2 DC12-24

*1. The applicable load current depends on the ambient temperature. For details, refer to Load Current vs. Ambient Temperature in Engineering Data on page 1235.

*2. The applicable DIN Track is the TR35-15Fe (IEC 60715). For details, refer to the mounting information in the Safety Precautions for All G3PE Models on page 1243. *3. DIN Track or Screw mounting.

Models with Externally Attached Heat Sinks

Number of phases	Insulation method	Operation indicator	Rated input voltage	Zero cross function	Туре	Applicable load *	Number of poles	Model
						15 4 100 +- 010 1/40	3	G3PE-215B-3H DC12-24
						15 A, 100 to 240 VAC	2	G3PE-215B-2H DC12-24
						05 A 400 to 040 VAO	3	G3PE-225B-3H DC12-24
						25 A, 100 to 240 VAC	2	G3PE-225B-2H DC12-24
						25 A 100 to 040 V/AC	3	G3PE-235B-3H DC12-24
						35 A, 100 to 240 VAC	2	G3PE-235B-2H DC12-24
					45 A 100 to 040 VAC	3	G3PE-245B-3H DC12-24	
T hus a sub-sec	-, Phototriac				Externally attached heat sinks	45 A, 100 to 240 VAC	2	G3PE-245B-2H DC12-24
Three-phase	coupler	Yes (yellow)	12 to 24 VDC	Yes		15 A 000 to 100 \/AO	3	G3PE-515B-3H DC12-24
						15 A, 200 to 480 VAC	2	G3PE-515B-2H DC12-24
						05 A 000 to 400 V/AO	3	G3PE-525B-3H DC12-24
						25 A, 200 to 480 VAC	2	G3PE-525B-2H DC12-24
					05 4 000 1 400 1440	3	G3PE-535B-3H DC12-24	
						35 A, 200 to 480 VAC	2	G3PE-535B-2H DC12-24
						45 A 000 to 400 1/4 C	3	G3PE-545B-3H DC12-24
						45 A, 200 to 480 VAC	2	G3PE-545B-2H DC12-24

* The rated load current depends on the heat sink or radiator that is mounted. It also depends on the ambient temperature. For details, refer to Load Current vs. Ambient Temperature on page 1235.

Accessories (Order Separately) Heat Sink

Heat resistance Rth (s-a) (°C/W)	Model
1.67	Y92B-P50
1.01	Y92B-P100
0.63	Y92B-P150
0.43	Y92B-P200
0.36	Y92B-P250

Specifications

Certification

UL508, CSA22.2 No.14, and EN60947-4-3

Ratings (at an Ambient Temperature of 25°C) **Operating Circuit (All Models)**

ItemModel	Same for all models
Rated operating voltage	12 to 24 VDC
Operating voltage range	9.6 to 30 VDC
Rated input current (impedance)	10 mA max. (24 VDC)
Must-operate voltage	9.6 VDC max.
Must-release voltage	1 VDC min.
Insulation method	Phototriac
Operation indicator	Yellow LED

Main Circuit of Models with Built-in Heat Sinks

Model		G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-
Item	215B- 3(N)	215B- 2(N)	225B- 3(N)	225B- 2(N)	235B- 3(N)	235B- 2(N)	245B- 3(N)	245B- 2(N)	515B- 3(N)	515B- 2(N)	525B- 3(N)	525B- 2(N)	535B- 3(N)	535B- 2(N)	545B- 3(N)	545B- 2(N)
Rated load voltage				100 to 2	40 VAC							200 to 4	80 VAC			
Operating voltage range				75 to 26	64 VAC							180 to 5	528 VAC			
Rated load current *1	15 A (at	40°C)	25 A (a	t 40°C)	35 A (at 25°C) 45 A (at 25°C)			15 A (a	t 40°C)	25 A (a	t 40°C)	35 A (at 25°C) 45 A (at 25°			t 25°C)	
Minimum load current	t 0.2 A 0.5 A															
Inrush current resistance (peak value)	150 (60 Hz, 1		220 (60 Hz,		440 A (60 Hz, 1 cycle)				220 (60 Hz,			440 A (60 Hz, 1 cycle)				
Permissible I ² t (reference value)	1214	A²s	260	A²s	s 1,260A ² s 260A ² s 1,260					0A²s						
Applicable load (resistive load: AC1 class) *2	5.1 k (at 200		8.6 (at 200		12.1 (at 200			5 kW 0 VAC)	12.5 (at 480		20.7 (at 480		29.0 (at 480		37.4 (at 480	

*1. The applicable load current depends on the ambient temperature. For details, refer to Load Current vs. Ambient Temperature in Engineering *Data* on page 1235. ***2.** Applicable Load

Use the following formula to calculate the maximum total capacity of a heater load for a three-phase balanced load with delta connections. Maximum load capacity = Load current × Load voltage × $\sqrt{3}$

Example: 15 A \times 200 V $\times \sqrt{3}$ = 5,196 W \cong 5.1 kW

Example: 15 A × 400 V × $\sqrt{3}$ = 10,392 W \cong 10.3 kW

Main Circuit of Models with Externally Attached Heat Sinks

Model	G3PE-	G3PE-		G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-		G3PE-	G3PE-	G3PE-	G3PE-	G3PE-	G3PE-			
Item	215B- 3H	215B- 2H	225B- 3HH	225B- 2H	235B- 3H	235B- 2H	245B- 3H	245B- 2H	515B- 3H	515B- 2H	525B- 3H	525B- 2H	535B- 3H	535B- 2H	545B- 3H	545B- 2H			
Rated load voltage	100 to 240 VAC									200 to 480 VAC									
Operating voltage range		75 to 264 VAC 180 to 528 VAC																	
Rated load current *	15 A (a	t 40°C)	25 A (a	t 40°C)	35 A (at 25°C) 45 A (at 25°C)			15 A (at 40°C) 25 A (at 40°C)				35 A (at 25°C) 45 A (at		t 25°C)					
Minimum load current		0.2	2 A							0.8	5 A								
Inrush current resistance (peak value)	150 (60 Hz,		220 (60 Hz,			44 (60 Hz,) A 1 cycle)				0 A 1 cycle)				0 A 1 cycle)				
Permissible l ² t (reference value)	121	A²s	260	A²s	1,260A ² s 260A ² s 1,260A ² s														
Applicable load (resistive load: AC1		Refer to Engineering Data on page 1235.																	

class)

* The rated load current depends on the heat sink or radiator that is mounted. It also depends on the ambient temperature.

For details, refer to Load Current vs. Ambient Temperature in Engineering Data on page 1235.

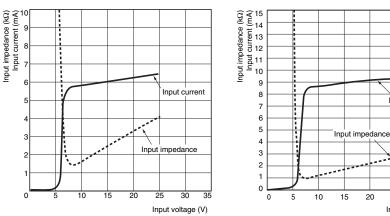
Characteristics Models with Built-in Heat Sinks

Model	G3PE- 215B-	G3PE- 215B-	G3PE- 225B-	G3PE- 225B-	G3PE- 235B-	G3PE- 235B-	G3PE- 245B-	G3PE- 245B-	G3PE- 515B-	G3PE- 515B-	G3PE- 525B-	G3PE- 525B-	G3PE- 535B-	G3PE- 535B-	G3PE- 545B-	G3PE- 545B-
Item	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)	3(N)	2(N)
Operate time	1/2 of loa	d power s	ource cyc	le + 1 ms r	max.											
Release time	1/2 of loa	d power s	ource cyc	le + 1 ms r	nax.											
Output ON voltage drop	1.6 V (RM	/IS) max.							1.8 V (RI	MS) max.						
Leakage current *	10 mA m	ax. (at 200	VAC)						20 mA m	ax. (at 48	0 VAC)					
Insulation resistance	100 MΩ i	100 MΩ min. (at 500 VDC)														
Dielectric strength	2,500 VA	2,500 VAC, 50/60 Hz for 1 min														
Vibration resistance				55 to 10 H o 10 Hz, 0.												
Shock resistance	294 m/s ²	(reverse r	nounting:	98 m/s2)												
Ambient storage temperature	-30 to 10	00°C (with	no icing o	r condensa	ation)											
Ambient operating temperature	-30 to 80)°C (with n	o icing or	condensat	tion)											
Ambient operating humidity	45% to 8	45% to 85%														
Weight	Approx. 1	l.25 kg	Approx. 1.45 kg	Approx. 1.25 kg	Approx. 1.65 kg	Approx. 1.45 kg	Approx. 2.0 kg	Approx. 1.65 kg	Approx.	1.25 kg	Approx. 1.45 kg	Approx. 1.25 kg	Approx. 1.65 kg	Approx. 1.45 kg	Approx. 2.0 kg	Approx. 1.65 kg

* The leakage current of phase S will be approximately $\sqrt{3}$ times larger if the 2-element model is used.

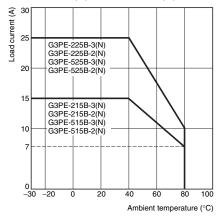
Models with Externally Attached Heat Sinks

Model Item	G3PE- 215B- 3H	G3PE- 215B- 2H	G3PE- 225B- 3H	G3PE- 225B- 2H	G3PE- 235B- 3H	G3PE- 235B- 2H	G3PE- 245B- 3H	G3PE- 245B- 2H	G3PE- 515B- 3H	G3PE- 515B- 2H	G3PE- 525B- 3H	G3PE- 525B- 2H	G3PE- 535B- 3H	G3PE- 535B- 2H	G3PE- 545B- 3H	G3PE- 545B- 2H
Operate time	1/2 of loa	/2 of load power source cycle + 1 ms max.														
Release time	1/2 of loa	ld power s	ource cycl	le + 1 ms r	nax.											
Output ON voltage drop	1.6 V (RI	1.6 V (RMS) max. 1.8 V (RMS) max.														
Leakage current *	10 mA m	ax. (at 200	O VAC)						20 mA m	iax. (at 48	OVAC)					
Insulation resistance	100 MΩ	100 MΩ min. (at 500 VDC)														
Dielectric strength	2,500 VA	2,500 VAC, 50/60 Hz for 1 min														
Vibration resistance	10 to 55	10 to 55 to 10 Hz, 0.375-mm single amplitude (0.75-mm double amplitude)														
Shock resistance	Destructi	Destruction: 294 m/s ²														
Ambient storage temperature	-30 to 10	-30 to 100°C (with no icing or condensation)														
Ambient operating temperature	-30 to 80	-30 to 80°C (with no icing or condensation)														
Ambient operating humidity	45% to 8	45% to 85%														
Weight	Approx. 3	Approx. 300 g														

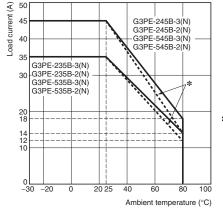

* The leakage current of phase S will be approximately $\sqrt{3}$ times larger if the 2-element model is used.

Heat Sinks

Model	Weight
Y92B-P50	Approx. 450 g
Y92B-P100	Approx. 450 g
Y92B-P150	Approx. 600 g
Y92B-P200	Approx. 850 g
Y92B-P250	Approx. 1,200 g


Engineering Data

Input Voltage vs. Input Impedance and Input Voltage vs. Input Current G3PE-2 B-0 G3PE-5 B-0



Load Current vs. Ambient Temperature

Models with Built-in Heat Sinks G3PE-215B-3(N), G3PE-225B-3(N) G3PE-215B-2(N), G3PE-225B-2(N) G3PE-515B-3(N), G3PE-525B-3(N) G3PE-515B-2(N), G3PE-525B-2(N)

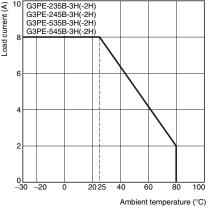
G3PE-235B-3(N), G3PE-245B-3(N) G3PE-235B-2(N), G3PE-245B-2(N) G3PE-535B-3(N), G3PE-545B-3(N) G3PE-535B-2(N), G3PE-545B-2(N)

Ta = 25°C

Input current

Input voltage (V)

20 25 30


35

The dotted lines in the charts are the UL derating curves for the G3PE-235B-3(N), G3PE-245B-3(N), G3PE-235B-2(N), G3PE-245B-2(N), G3PE-535B-3(N), G3PE-545B-3(N), G3PE-535B-2(N), G3PE-545B-2(N).

Models with Externally Attached Heat Sinks G3PE-215B-3H(-2H) G3 G3PE-225B-3H(-2H) G3

G3PE-515B-3H(-2H) G3PE-525B-3H(-2H) -oad current (A) 10 G3PE-225B-3H(-2H) G3PE-525B-3H(-2H) 6 5 G3PE-215B-3H(-2H) G3PE-515B-3H(-2H) 4 2 0∟ _30 -20 0 20 40 60 80 100 Ambient temperature (°C)

ks G3PE-235B-3H(-2H) G3PE-245B-3H(-2H) G3PE-535B-3H(-2H) G3PE-545B-3H(-2H) G3PE-235B-3H(-2H) G3PE-235B-3H(-2H) G3PE-538B-3H(-2H) G3PE-538B-3H(-2H)

Inrush Current Resistance: Non-repetitive

Keep the inrush current to below the inrush current resistance value (i.e., below the broken line) if it occurs repetitively. G3PE-215B-3(N)(H) G3PE-525B-3(N)(H) G3PE-235B-3(N)(H)

Deak) Peak)

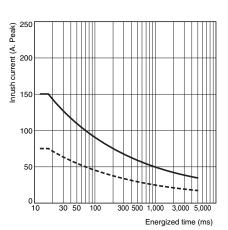
200

150

100

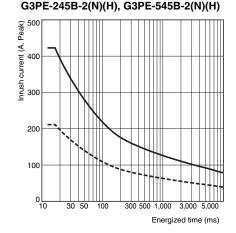
50

0∟ 10

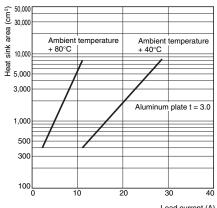

30 50

100

current (A.


Inrush

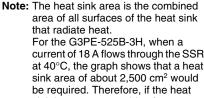
G3PE-215B-2(N)(H)



G3PE-225B-2(N)(H), G3PE-525B-2(N)(H) G3PE-515B-3(N)(H), G3PE-515B-2(N)(H),

G3PE-235B-3(N)(H), G3PE-535B-3(N)(H) G3PE-235B-2(N)(H), G3PE-535B-2(N)(H) G3PE-245B-3(N)(H), G3PE-545B-3(N)(H)

Heat Sink Area vs. Load Current (40°C and 80°C) G3PE-225B-3H G3PE-525B-3H



300 500 1,000

3,000 5,000

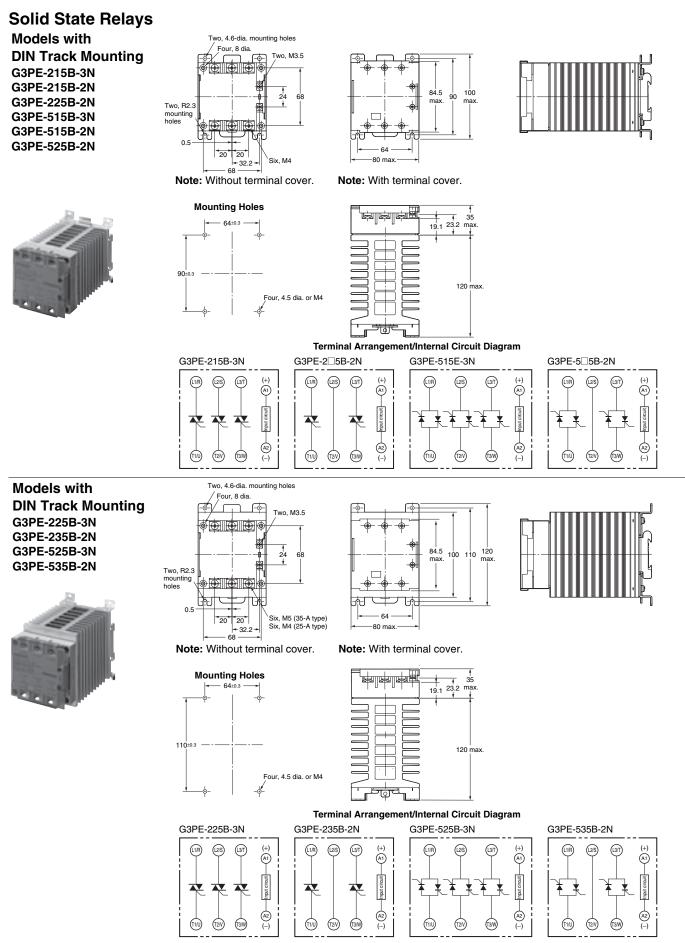
Energized time (ms)

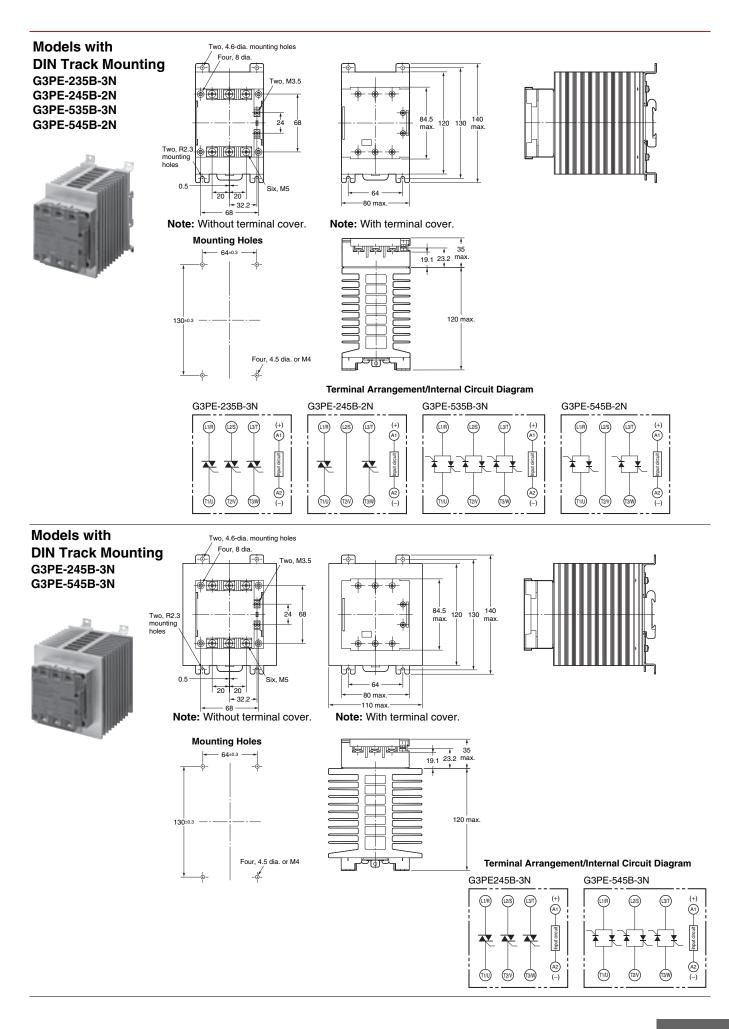
sink is square, one side of an aluminum plate in the heat sink must be 36 cm or longer $(\sqrt{2,500} \text{ (cm}^2)/2 =$ 36 cm (rounded to a whole number)).

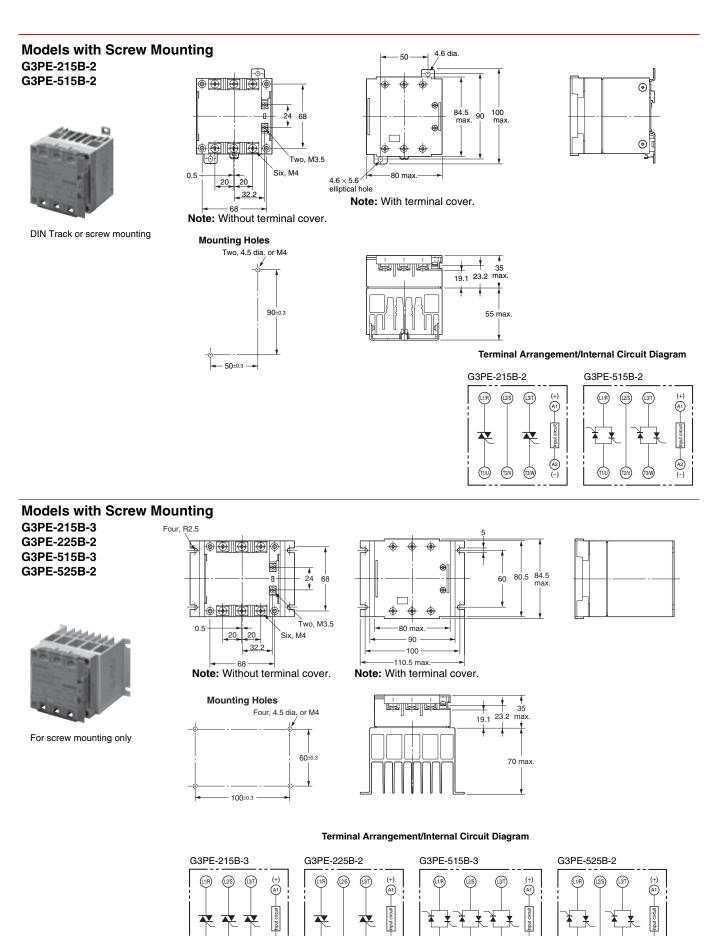
Load current (A)

Models with Externally Attached Heat Sinks Heat Resistance Rth (Junction/SSR Back Surface)

Model	Rth (°C/W)
G3PE-215B-3H	1.05
G3PE-225B-3H	0.57
G3PE-235B-3H	0.57
G3PE-245B-3H	0.57


Heat Resistance of Heat Sinks


Model	Rth (°C/W)
Y92B-P50	1.67
Y92B-P100	1.01
Y92B-P150	0.63
Y92B-P200	0.43
Y92B-P250	0.36


Note: If a commercially available heat sink is used, use one that has a heat resistance equal to or lower than a standard OMRON Heat Sink.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

(-)

(T1/U)

(T2/V)

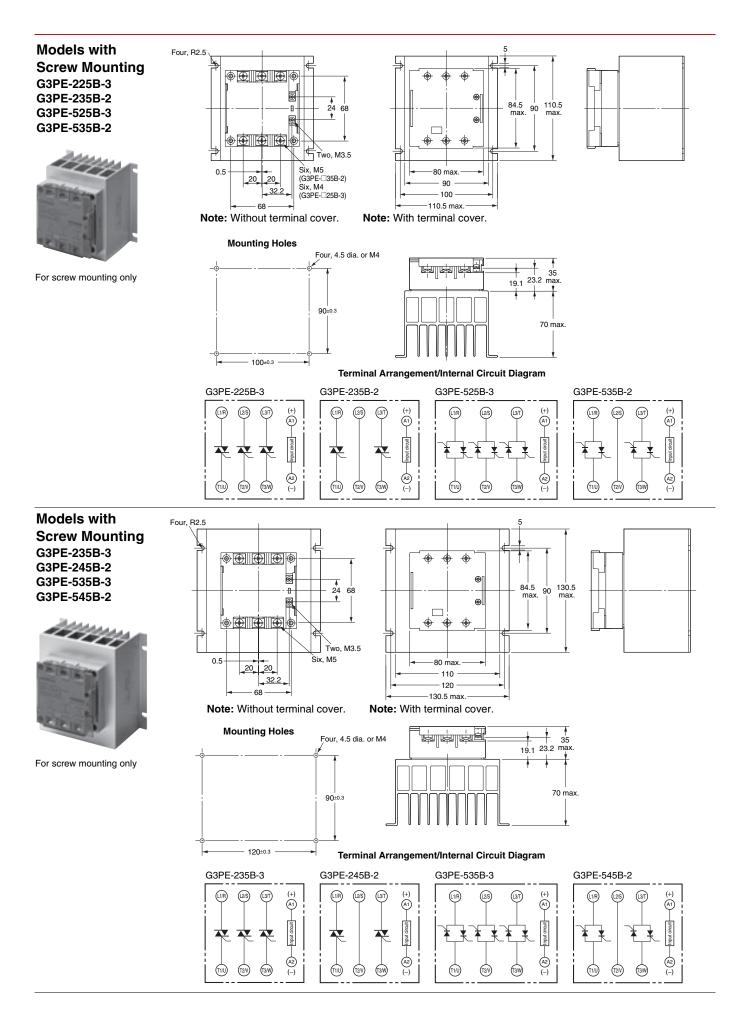
(T3/W)

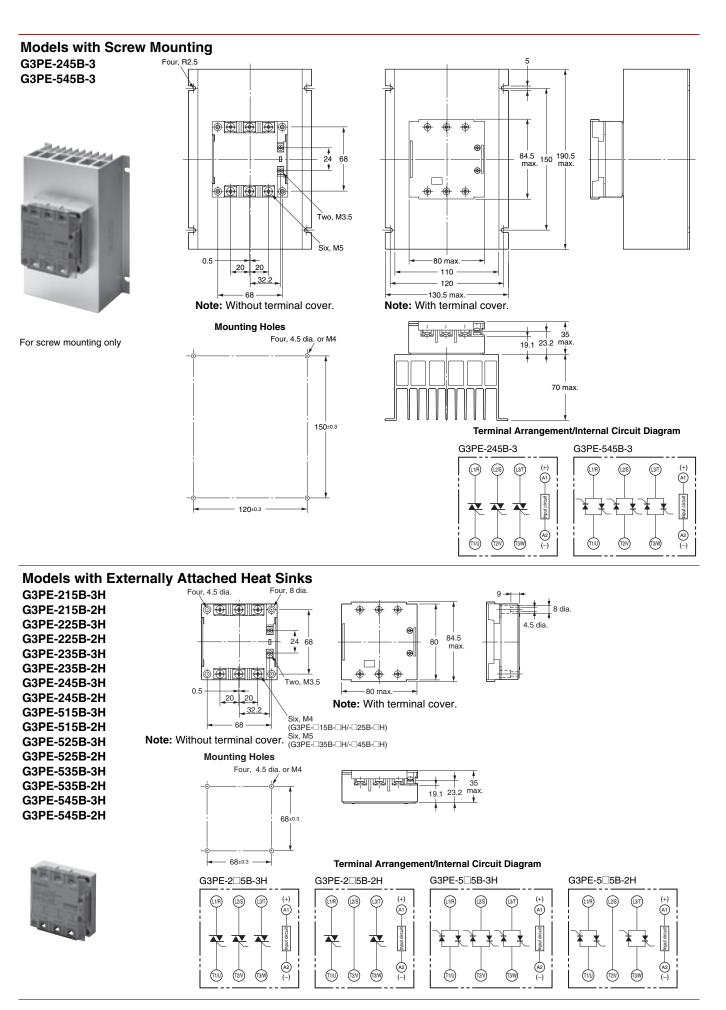
T1/U (T2/V)

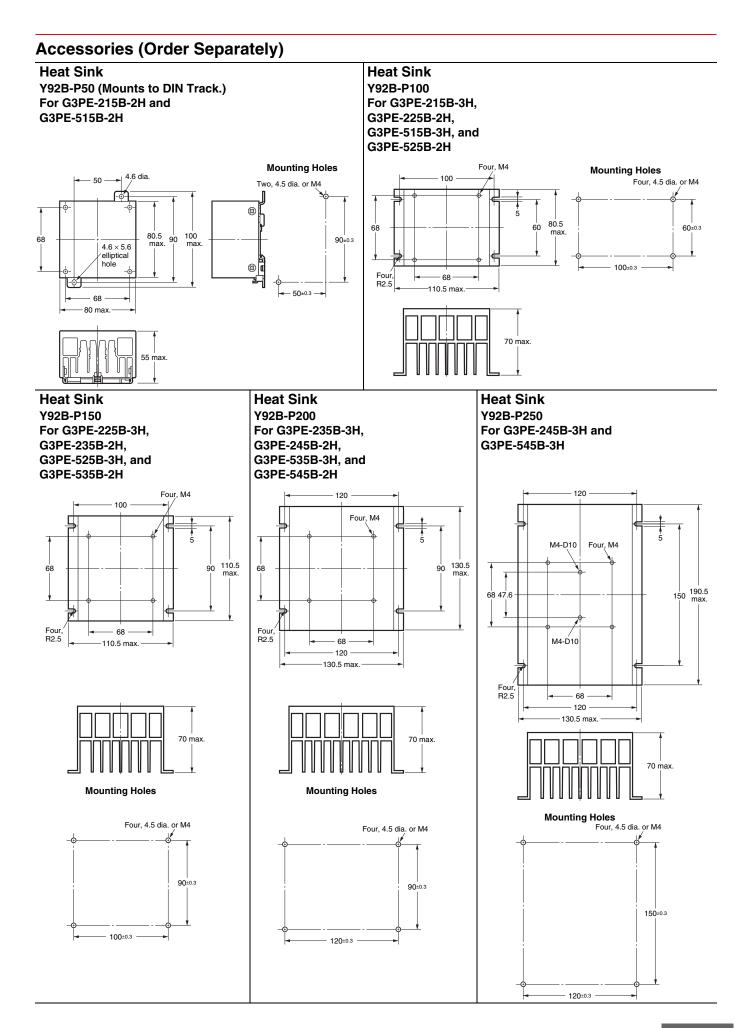
(-)

(T3W)

(T1/U) (T2/V)


(-)


A2


(-)

(11) (121) (1310)

(T3/W)

For common precautions, refer to Safety Precautions for All Solid-state Relays on page 1191.

CAUTION

Minor electrical shock may occasionally occur. Do not touch the G3PE terminal section (i.e., currentcarrying parts) while the power is being supplied. Also, always attach the cover terminal.

The G3PE may rupture if short-circuit current flows. As protection against accidents due to shortcircuiting, be sure to install protective devices, such as fuses and no-fuse breakers, on the power supply side.

Minor electrical shock may occasionally occur. Do not touch the main circuit terminals on the G3PE immediately after the power supply has been turned OFF. Shock may result due to the electrical charge stored in the built-in snubber circuit.

Minor burns may occasionally occur. Do not touch the G3PE or the heat sink while the power is being supplied or immediately after the power supply has been turned OFF. The G3PE and heat sink become extremely hot.

Precautions for Safe Use

OMRON constantly strives to improve quality and reliability. SSRs, however, use semiconductors, and semiconductors may commonly malfunction or fail. In particular, it may not be possible to ensure safety if the SSRs are used outside the rated ranges. Therefore, always use the SSRs within the ratings. When using an SSR, always design the system to ensure safety and prevent human accidents, fires, and social harm in the event of SSR failure. System design must include measures such as system redundancy, measures to prevent fires from spreading, and designs to prevent malfunction.

Transport

Do not transport the G3PE under the following conditions. Doing so may result in damage, malfunction, or deterioration of performance characteristics.

- Conditions in which the G3PE may be subject to water.
- Conditions in which the G3PE may be subject to high temperature or high humidity.
- Conditions in which the G3PE is not packaged.

Operating and Storage Environments

Do not use or store the G3PE in the following locations. Doing so may result in damage, malfunction, or deterioration of performance characteristics.

- Locations subject to rainwater or water splashes.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to high temperature or high humidity.
- Do not store in locations subject to ambient storage temperatures outside the range –30 to 100°C.
- Do not use in locations subject to relative humidity outside the range 45% to 85%.
- Locations subject to corrosive gases.
- · Locations subject to dust (especially iron dust) or salts.
- Locations subject to direct sunlight.
- · Locations subject to shock or vibration.

Installation and Handling Do not block the movement of the air surrounding the G3PE or heat sink. Abnormal heating of the G3PE may result in shorting failures of the output elements or burn damage.

- Do not use the G3PE if the heat radiation fins have been bent by being dropped. Doing so may result in malfunction due to a reduction in the heat radiation performance.
- Do not handle the G3PE with oily or dusty (especially iron dust) hands. Doing so may result in malfunction.
- Attach a heat sink or radiator when using an SSR. Not doing so may result in malfunction due to a reduction in the heat radiation performance.

Installation and Mounting

- Mount the G3PE in the specified direction. Otherwise excessive heat generated by the G3PE may cause short-circuit failures of the output elements or burn damage.
- Make sure that there is no excess ambient temperature rise due to the heat generation of the G3PE. If the G3PE is mounted inside a panel, install a fan so that the interior of the panel is fully ventilated.
- Make sure the DIN track is securely mounted. Otherwise, the G3PE may fall.
- When mounting the heat sink, do not allow any foreign matter between the heat sink and the mounting surface. Foreign matter may cause malfunction due to a reduction in the heat radiation performance.
- If the G3PE is mounted directly in a control panel, use aluminum, steel plating, or similar material with a low heat resistance as a substitute for a heat sink. Using the G3PE mounted in wood or other material with a high heat resistance may result in fire or burning due to heat generated by the G3PE.

Installation and Wiring

- Use wires that are suited to the load current. Otherwise, excessive heat generated by the wires may cause burning.
- Do not use wires with a damaged outer covering.
- Otherwise, it may result in electric shock or ground leakage. • Do not wire any wiring in the same duct or conduit as power or high-tension lines. Otherwise, inductive noise may damage the
- G3PE or cause it to malfunction.
 When tightening terminal screws, prevent any non-conducting material from becoming caught between the screws and the
- tightening surface. Otherwise, excessive heat generated by the terminal may cause burning.
- Do not use the G3PE with loose terminal screws. Otherwise, excessive heat generated by the wire may cause burning.
- For the G3PE models with a carry current of 35 A or larger, use M5 crimp terminals that are an appropriate size for the diameter of the wire.
- Always turn OFF the power supply before performing wiring. Not doing so may cause electrical shock.

Installation and Usage

- Select a load within the rated values. Not doing so may result in malfunction, failure, or burning.
- Select a power supply within the rated frequencies. Not doing so may result in malfunction, failure, or burning.
- If a surge voltage is applied to the load of the Contactor, a surge bypass(*) will function to trigger the output element. The G3PE therefore cannot be used for motor loads. Doing so may result in load motor malfunction.
- * Surge Bypass

This circuit protects the output circuit from being destroyed. This suppresses the surge energy applied inside the SSR in comparison with a varistor for the main circuit protection. By alleviating electrical stress on the electronic components of the SSR's output circuit, failure and destruction due to surge voltage are suppressed.

Reference value: Surge dielectric strength of 30 kV min. (Test conditions: $1.2 \times 50 \ \mu$ s standard voltage waveform, peak voltage of 30 kV, repeated 50 times according to JIS C5442)

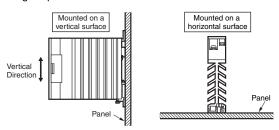
Precautions for Correct Use

The SSR in operation may cause an unexpected accident. Therefore it is necessary to test the SSR under the variety of conditions that are possible. As for the characteristics of the SSR, it is necessary to consider differences in characteristics between individual SSRs.

The ratings in this catalog are tested values in a temperature range between 15° C and 30° C, a relative humidity range between 25° and 85° , and an atmospheric pressure range between 86 and 106 kPa. It will be necessary to provide the above conditions as well as the load conditions if the user wants to confirm the ratings of specific SSRs.

Causes of Failure

- Do not drop the G3PE or subject it to abnormal vibration or shock during transportation or mounting. Doing so may result in deterioration of performance, malfunction, or failure.
- Tighten each terminal to the torque specified below. Improper tightening may result in abnormal heat generation at the terminal, which may cause burning.


Terminals	Screw terminal diameter	Tightening torque		
Input terminals	M3.5	0.59 to 1.18 N⋅m		
Output	M4	0.98 to 1.47 N⋅m		
terminals	M5	1.57 to 2.45 N⋅m		

- Do not supply overvoltage to the input circuits or output circuits. Doing so may result in failure or burning.
- Do not use or store the G3PE in the following conditions. Doing so may result in deterioration of performance.
 - · Locations subject to static electricity or noise
 - Locations subject to strong electric or magnetic fields
 - Locations subject to radioactivity

Mounting

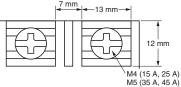
• The G3PE is heavy. Firmly mount the DIN Track and secure both ends with End Plates for DIN Track mounting models. When mounting the G3PE directly to a panel, firmly secure it to the panel. Screw diameter: M4

Tightening torque: 0.98 to 1.47 N·m

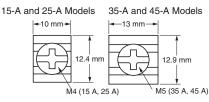
Note: Make sure that the load current is 50% of the rated load current when the G3PE is mounted horizontally.

For details on close mounting, refer to the related information under performance characteristics.

Mount the G3PE in a direction so that the markings read naturally.


 The G3PE-2N/-3N (DIN Track mounting models) can be mounted on the following TR35-15Fe (IEC 60715) DIN Tracks.

Manufacturer	Thickness	1.5 mm	2.3 mm
Schneider		AM1-DE200	
WAGO		210-114, 210-197	210-118
PHOENIX		NS35/15	NS35/15-2.3


Wiring

• When using crimp terminals, refer to the terminal clearances shown below.

Output Terminal Section for Three-phase Models

Output Terminal Section for Single-phase Models

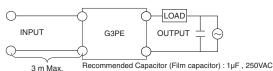
Input Terminal Section

- Make sure that all lead wires are thick enough for the current.
- For three-element and two-element models, the output terminal will be charged even when the Relay is OFF. Touching the terminal may result in electric shock. To isolate the Relay from the power supply, install an appropriate circuit breaker between the power supply and the Relay.
- Always turn OFF the power supply before wiring the Unit.
- Terminal L2 and terminal T2 of a 2-element model are internally connected to each other. Connect terminal L2 to the ground terminal of the power supply.

If terminal L2 is connected to a terminal other than the ground terminal, cover all the charged terminals, such as heater terminals, to prevent electric shock and ground faults.

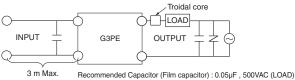
Fuses

• Use a quick-burning fuse on the output terminals to prevent accidents due to short-circuiting. Use a fuse with equal or greater performance than those given in the following table.


Recommended Fuse Capacity

Rated G3PE output current	Applicable SSR	Fuse (IEC 60269-4)
15 A	G3PE 15B Series	32 A
25 A	G3PE 25B Series	32 A
35 A	G3PE 35B Series	63 A
45 A	G3PE 45B Series	03 A

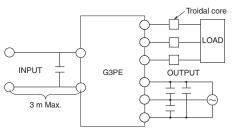
EMC Ditective Compliance


EMC directives can be complied with under the following conditions.

- 1. Single phase 240V (2 B) models
- A capacitor must be connected to the load power supply.
- The input cable must be less than 3 m.

2. Single phase 480V (5 \square B) models

- A capacitor must be connected to the input power supply.
- A capacitor, varistor and toroidal core must be connected to the load power supply.
- The input cable must be less than 3 m.



0.1μF, 250VAC (INPUT) Recommended Varistor : 470V, 1750A

Recommended Troidal core : NEC/TOKIN:ESD-R-25B or equivalent

3. Three phases models

- A capacitor must be connected to the input power supply.
- A capacitor and toroidal core must be connected to the load power supply.
- The input cable must be less than 3 m.

Recommended Capacitor (Film capacitor) : 1µF , 250VAC (240V LOAD) 0.05µF , 500VAC (480V LOAD) 0.1µF , 250VAC (INPUT)

Recommended Troidal core : NEC/TOKIN:ESD-R-25B or equivalent

EMI

This is a Class A product (for industrial environments). In a domestic environment, the G3PE may cause radio interference, in which case the user may be required to take appropriate measures.

Noise and Surge Effects

If noise or an electrical surge occurs that exceeds the malfunction withstand limit for the G3PE output circuit, the output will turn ON for a maximum of one half cycle to absorb the noise or surge. Confirm that turning the output ON for a half cycle will not cause a problem for the device or system in which the G3PE is being used prior to actual use. The G3PE malfunction withstand limit is shown below. • Malfunction withstand limit (reference value): 500 V

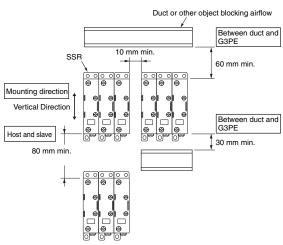
Note: This value was measured under the following conditions.

Noise duration: 100 ns and 1 μs Repetition period: 100 Hz

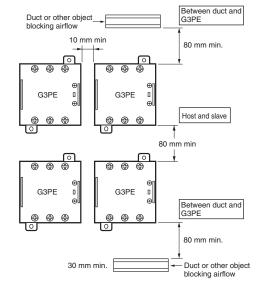
Noise application time: 3 min

Mounting Models with Externally Attached Heat Sinks

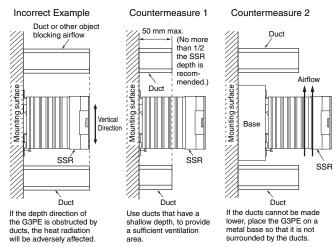
- Before attaching an external Heat Sink or Radiator to the Unit, always apply silicone grease, such as Momentive Performance Material's YG6260 or Shin-Etsu Chemical's G747, to the mounting surface to enable proper heat radiation.
- Tighten the screws to the following torque to secure the Unit and external Heat Sink or Radiator to enable proper heat dissipation. Tightening torque: 2.0 N·m


Mounting to Control Panel

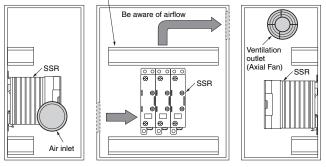
The G3PE is heavy. Firmly mount the DIN track and secure both ends with End Plates for DIN-track-mounting models. When mounting the G3PE directly to a panel, firmly secure it to the panel.


If the panel is airtight, heat from the SSR will build up inside, which may reduce the current carry ability of the SSR or adversely affect other electrical devices. Be sure to install ventilation holes on the top and bottom of the panel.

SSR Mounting Pitch (Panel Mounting)


Single-phase Model

Three-phase Models



Relationship between the G3PE and Ducts or Other Objects Blocking Airflow

Ventilation Outside the Control Panel

- Note: 1. If the air inlet or air outlet has a filter, clean the filter regularly to prevent it from clogging to ensure an efficient flow of air.
 - Do not locate any objects around the air inlet or air outlet, otherwise the objects may obstruct the proper ventilation of the control panel.
 - A heat exchanger, if used, should be located in front of the G3PE to ensure the efficiency of the heat exchanger.

G3PE Ambient Temperature

The rated current of the G3PE is measured at an ambient temperature of 40°C.

The G3PE uses a semiconductor to switch the load. This causes the temperature inside the control panel to increase due to heating resulting from the flow of electrical current through the load. The G3PE reliability can be increased by adding a ventilation fan to the control panel to dispel this heat, thus lowering the ambient temperature of the G3PE.

(Arrhenius's law suggests that life expectancy is doubled by each 10° C reduction in ambient temperature.)

SSR rated current (A)	15 A	25 A	35 A	45 A
Required number of fans per SSR	0.23	0.39	0.54	0.70
Eventually, Earl 10,000E,000a with lead average of 15 A				

Example: For 10 G3PE SSRs with load currents of 15 A, $0.23 \times 10 = 2.3$

Thus, 3 fans would be required. Note: 1. Size of fans: 92 mm \times 92 mm, Air volume: 0.7 m³/min,

Ambient temperature of control panel: 30°C

- 2. If there are other instruments that generate heat in the control panel in addition to SSRs, more ventilation will be required.
- **3.** Ambient temperature: The temperature that will allow the SSR to cool by convection or other means.

Refer to the Service & Support on your OMRON website for technical descriptions and FAQs on the product.

Solid State Relays Common Precautions

●For precautions on individual products, refer to "■Precautions" in individual product information.

CAUTION /!\

Touching the charged section is likely to cause electric shock. Do not touch the SSR terminal section (the charged section) when the power supply is ON. For SSRs with terminal covers, be sure to attach the cover before use.

The SSR and heat sink will be hot and are likely to cause burns. Do not touch the SSR or the heat sink either while the power supply is ON, or immediately after the power is turned OFF.

The internal snubber circuit is charged and will cause electric shock. Do not touch the SSR load terminal immediately after the power is turned OFF.

Electric shock is likely to result. Be sure to conduct wiring with the power supply turned OFF.

SSRs may occasionally explode. Do not apply a short-circuit current to the load side of an SSR. To protect against short-circuit accidents, be sure to install a protective device, such as a

quick-break fuse etc. on the power supply line.

Safety Cautions

OMRON constantly strives to improve quality and reliability. SSRs, however, use semiconductors, and semiconductors may commonly malfunction or fail. Short-circuit failures represent the main failure mode and can result in an inability to shut OFF the load. Therefore, for fail-safe operation of control circuits that use SSRs, do not use circuits that shut OFF the load power supply only with an SSR, but rather also use circuits with a contactor or breaker that shuts off the load when the SSR fails. In particular, it may not be possible to ensure safety if the SSRs are used outside the rated ranges. Therefore, always use the SSRs within the ratings. When using an SSR, always design the system to ensure safety

and prevent human accidents, fires, and social harm in the event of SSR failure. System design must include measures such as system redundancy, measures to prevent fires from spreading, and designs to prevent malfunction.

- 1. Do not apply voltage or current in excess of the ratings to the terminals of the SSR. Doing so may result in failure or burn damage.
- 2. Heat Radiation
 - Be careful with the increase in ambient temperature caused by self-heating. Mount a fan etc. to provide a sufficient air ventilation especially in case of internal mounting.
 - Mount the SSR following the specified mounting orientation. The abnormal heat generation from the body may cause output elements to short or may cause burning.
- 3. Perform correct wiring following the precautions below. Improper wiring may lead to abnormal heating resulting in burn damage to the SSR once the power is supplied.
 - Use a suitable wire according to the load current. Otherwise the abnormal heating of the wire may cause burning.
- 4. Operating Conditions
 - Designate the load within the rated range. Otherwise it may result in faulty operation, malfunction, or burning.
 - Use a power supply within the rated frequency range. Otherwise it may result in faulty operation, malfunction, or burnina.
- 5. Do not transport the SSR under the following conditions. Failure, malfunction, or deterioration of performance characteristics may occur.
 - Conditions under which the SSR will be exposed to water
 - High temperatures or high humidity
 - Without proper packing
- 6. Operating and Storage Environment

Do not use or store the SSR in the following environments. Doing so may result in damage, malfunction, or deterioration of performance characteristics.

- · Do not use or store in environments subject to exposure to sunlight.
- Do not use in environments subject to temperatures outside the range specified individually.
- Do not use in environments subject to relative humidity outside the range of 45% to 85% RH, or in locations subject to condensation as the result of severe changes in temperature.
- Do not store in environments subject to temperatures outside the range specified individually.
- Do not use or store in environments subject to corrosive or flammable gases.
- Do not use or store in environments subject to dust, salt, or iron dust, or in locations subject to salt damage.
- Do not use or store in environments subject to shock or vibration.
- Do not use or store in environments subject to exposure to water, oil, or chemicals, or in environments subject to exposure to rain and water splashes.
- Do not use or store in environments subject to high temperature or high humidity.

Precautions for Correct use

Before Using SSR

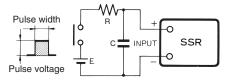
1. The SSR in operation may cause an unexpected accident. Therefore it is necessary to test the SSR under the variety of conditions that are possible.

For example, as for the characteristics of the SSR, it is necessary to consider differences in characteristics between individual SSRs.

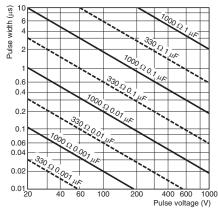
2. The ratings in this catalog are tested values in a temperature range between 15°C and 30°C, a relative humidity range between 25% and 85%, and an atmospheric pressure range between 88 and 106 kPa. It will be necessary to provide the above conditions as well as the load conditions if the user wants to confirm the ratings of specific SSRs.

■Input Circuit

•Connecting to the Input Side


There is variation in the input impedance of SSRs. Therefore, do not connect multiple inputs in series. Otherwise malfunction may occur.

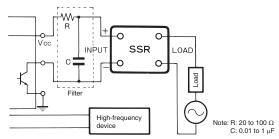
Input Noise


SSRs need only a small amount of power to operate. This is why the input terminals must shut out electrical noise as much as possible. Noise applied to the input terminals may result in malfunction. The following describes measures to be taken against pulse noise and inductive noise.

1. Pulse Noise

A combination of capacitor and resistor can absorb pulse noise effectively. The following is an example of a noise absorption circuit with capacitor C and resistor R connected to an SSR incorporating a photocoupler.

The value of R and C must be decided carefully. The value of R must not be too large or the supply voltage (E) will not be able to satisfy the required input voltage value. The larger the value of C is, the longer the release time will be, due to the time required for C to discharge electricity.



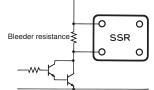
Note. For low-voltage models, sufficient voltage may not be applied to the SSR because of the relationship between C, R, and the internal impedance. When deciding on a value for R, check the input impedance for the SSR.

2. Inductive Noise

Do not wire power lines alongside the input lines. Inductive noise may cause the SSR to malfunction. If inductive noise is imposed on the input terminals of the SSR, use the following cables according to the type of inductive noise, and reduce the noise level to less than the must release voltage of the SSR. Twisted-pair wire: For electromagnetic noise Shielded cable: For static noise

A filter consisting of a combination of capacitor and resistor will effectively reduce noise generated from high-frequency equipment.

Input Conditions


1. Input Voltage Ripples

When there is a ripple in the input voltage, set the input voltage so that the peak voltage is lower than the maximum operating voltage and the root voltage is above the minimum operating voltage.

2. Countermeasures for Leakage Current

When the SSR is powered by transistor output, the must release voltage may be insufficient due to leakage current while power is OFF. To counteract this, connect bleeder resistance as shown in the diagram below and set the bleeder resistance so that VR is half of the release voltage or less.

The bleeder resistance R can be obtained in the way shown below.

$$R \leq \frac{E}{I_{L}-I}$$

E : Voltage applied at both ends of the bleeder resistance = half of the release voltage of the SSR

- IL : Leakage current of the transistor
- I : Release voltage of SSR

The actual value of the release current is not given in the datasheet and so when calculating the value of the bleeder resistance, use the following formula.

Release current for SSR = <u>Minimum value of release voltage</u> Input impedance

For SSRs with constant-current input circuits, calculation is performed at 0.1 mA.

The calculation for the G3M-202P DC24 is shown below as an example.

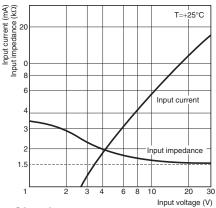
Release current I=
$$\frac{1 \text{ V}}{1.6 \text{ k}\Omega}$$
 =0.625 mA
Bleeder resistance R= $\frac{1 \text{ V} \times 1/2}{1 \iota - 0.625 \text{ mA}}$

Solid State Relays Common Precautions

3. ON/OFF Frequency

An SSR has delay times called the operating time and release time. Loads, such as inductive loads, also have delay times called the operating time and release time. These delays must all be considered when determining the switching frequency.

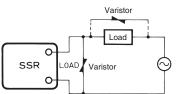
4. Input impedance


In SSRs which have wide input voltages (such as G3CN and G3TB), the input impedance varies according to the input voltage and changes in the input current.

For semiconductor-driven SSRs, changes in voltage can cause malfunction of the semiconductor, so be sure to check by the actual device before usage.

See the following examples.

Input impedance (Example)

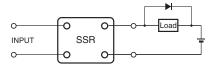

G3CN

■Output Circuit

AC Switching SSR Output Noise and Surges

- In case there is a large voltage surge in the AC current being used by the SSR, the RC snubber circuit built into the SSR between the SSR load terminals will not be sufficient to suppress the surge, and the SSR transient peak element voltage will be exceeded, causing overvoltage damage to the SSR.
- Only the following models have a built-in surge absorbing varistor: G3NA, G3S, G3PA, G3NE, G3PH, G3DZ (some models), G3RZ, and G3FM. When switching an inductive load with any other models, be sure to take countermeasures against surge, such as adding a surge absorbing element.
- In the following example, a surge voltage absorbing element has been added.

Select an element which meets the conditions in the following table as the surge absorbing element.


Voltage	Varistor voltage	Surge resistance
100 to 120 VAC	240 to 270 V	
200 to 240 VAC	440 to 470 V	1,000 A min.
380 to 480 VAC	820 to 1,000 V	

Output Connections

Do not connect SSR outputs in parallel. With SSRs, both sides of the output will not turn ON at the same time, so the load current cannot be increased by using parallel connections.

●DC Switching SSR Output Noise Surges

When an L load, such as a solenoid or electromagnetic valve, is connected, a diode that prevents counter-electromotive force. If the counter-electromotive force exceeds the withstand voltage of the SSR output element, it could result in damage to the SSR output element. To prevent this, insert the element parallel to the load, as shown in the following diagram and table.

As an absorption element, the diode is the most effective at suppressing the counter-electromotive force. The release time for the solenoid or electromagnetic valve will, however, increase. Be sure to check the circuit before use. To shorten the time, connect a Zener diode and a regular diode in series. The release time will be shortened at the same rate that the Zener voltage (Vz) of the Zener diode is increased.

Talbe 1. Absorption Element Example

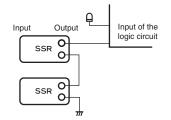
Absorption	>	-₩-₩-		\rightarrow
element	Diode	Diode + Zener diode	Varistor	CR
Effectiveness	0	0	\bigtriangleup	×
+	+		+	

(Reference)

1. Selecting a Diode

Withstand voltage = $V_{RM} \ge$ Power supply voltage $\times 2$ Forward current = IF \ge load current

2. Selecting a Zener Diode

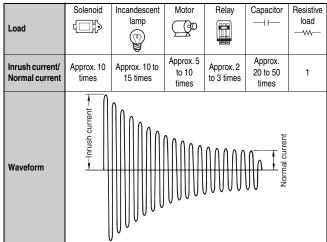

Zener voltage = Vz < SSR withstand voltage

Zener surge power =

PRSM > Vz × Load current × Safety factor (2 to 3) Note. When the Zener voltage is increased (Vz), the Zener diode capacity (PRSM) is also increased.

●AND Circuits with DC Output SSRs

Use the G3DZ relay for the following type of circuit.

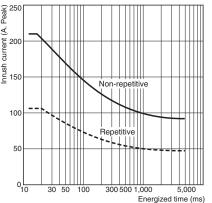

Self-holding Circuits

Self-holding circuits must use mechanical relays. (SSRs cannot be used to design self-holding circuits.)

Selecting an SSR for Different Loads

The following provides examples of the inrush currents for different loads.

AC Load and Inrush Current


1. Heater Load (Resistive Load)

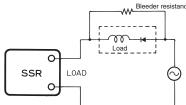
A resistive load has no inrush current. The SSR is generally used together with a pulse-voltage-output in temperature controller for heater ON/OFF switching. When using an SSR with the zero cross function, most generated noise is suppressed. This type of load does not, however, include all-metal and ceramic heaters. Since the resistance values at normal temperatures of all-metal and ceramic heaters are low, an overcurrent will occur in the SSR, causing damage. For switching of all-metal and ceramic heaters, select a Power Controller (G3PW, consult your OMRON representative) with a long soft-start time, or a constant-current switch.

2. Lamp Load

A large inrush current flows through incandescent lamps, halogen lamps, and similar devices (approx. 10 to 15 times higher than the rated current). Select an SSR so that the peak value of inrush current does not exceed half the inrush current resistance of the SSR. Refer to "Repetitive" (indicated by the dashed line) shown in the following figure. When a repetitive inrush current of greater than half the inrush current resistance is applied, the output element of the SSR may be damaged.

3. Motor Load

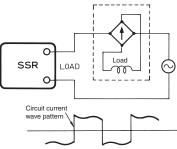
When a motor is started, an inrush current of 5 to 10 times the rated current flows and the inrush current flows for a longer time than for a lamp or transformer. In addition to measuring the startup time of the motor or the inrush current during use, ensure that the peak value of the inrush current is less than half the inrush current resistance when selecting an SSR. The SSR may be damaged by counterelectromotive force from the motor. Be sure to install overcurrent protection for when the SSR is turned OFF.


4. Transformer Load

When the SSR is switched ON, an energizing current of 10 to 20 times the rated current flows through the SSR for 10 to 500 ms. If there is no load in load side circuit, the energizing current will reach the maximum value. Select an SSR so that the energizing current does not exceed half the inrush current resistance of the SSR.

5. Half-wave Rectifying Circuit

AC electromagnetic counters or solenoids have built-in diodes, which act as half-wave rectifiers. For these types of loads, a halfwave AC voltage does not reach the SSR output. For SSRs with the zero cross function, this can cause them not to turn ON. Two methods for counteracting this problem are described below.


1. Connect a bleeder resistance with approximately 20% of the SSR load current.

2. Use SSRs without the zero cross function.

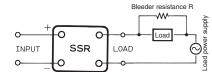
6. Full-wave Rectified Loads

AC electromagnetic counters and solenoids have built-in diodes, which act as full-wave rectifiers. The load current for these types of loads has a rectangular wave pattern, as shown in the following diagram.

Accordingly, AC SSRs use a triac (which turns OFF the element only when the circuit current is 0 A) in the output element. If the load current waveform is rectangular, it will result in an SSR release error.

When switching ON and OFF a load whose waves are all rectified, use Power MOS FET Relay.

-V-model SSRs: G3F-203SL-V, G3H-203SL-V


Power MOS FET Relay: G3DZ, G3RZ, G3FM

Note. Refer to your OMRON website for detailed specification of G3FM models.

7. Small-capacity Loads

Even when there is no input signal to the SSR, there is a small leakage current (IL) from the SSR output (LOAD). If this leakage current is larger than the load release current, the SSR may fail to release. Connect a bleeder resistance R in parallel to increase the SSR switching current.

$$R < \underbrace{E}_{I_{L}-I}$$
 E: Load (e.g., relays) release voltage
I: Load (e.g., relays) release current

Bleeder resistance standards: 100-VAC power supply, 5 to 10 kΩ, 3 W 200-VAC power supply, 5 to 10 kΩ, 15 W