imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOS FET Relays in DIP 6-pin packages that achieve the low ON resistance and high switching capacity of a mechanical relav

- Load voltage: 20 V, 40 V, 60 V, or 100 V
- 20-V Relay: Continuous load current of 4 A (8 A) max. *
- 40-V Relay: Continuous load current of 3.5 A (7 A) max. *
- 60-V G3VM-61BR/ER Relay: Continuous load current of 2.5 A max.
- 60-V G3VM-61BR1/ER1 Relay: Continuous load current of 3 A (6 A) max. *
- 100-V Relay: Continuous load current of 2 A (4 A) max. *

(Unit:mm, Average)

* Values in parentheses are for connection C.

Security equipment

Industrial equipment

RoHS Compliant

Application Examples

- Communication equipment
- Test & Measurement equipment

Package

DIP 6-pin PCB Terminals

Surface-mounting Terminals

Note: The actual product is marked differently from the image shown here.

Model Number Legend

Power circuit

G3VM-DDDDD 234 5

- 1. Load Voltage 2. Contact form 1:1a (SPST-NO)
- 2: 20 V
- 4: 40 V
- 6: 60 V
- 10: 100 V

4. Additional functions

R: Low ON resistance

- 3. Package
 - B : DIP 6-pin with PCB terminals

Note: The actual product is marked differently from the

image shown here.

E : DIP 6-pin with surface-mounting terminals

B1

5. Other informations

When specifications overlap, serial code is added in the recorded order.

Ordering Information

	Contact form	Load voltage (peak value) *				Stick packaging	Tape packaging		
Package						Model	Minimum	Model	Minimum
. uonago			Connection A, B	Connection C	PCB Terminals	Surface-mounting Terminals	package quantity	Surface-mounting Terminals	package quantity
	1a (SPST-NO)	20 V	4 A	8 A	G3VM-21BR	G3VM-21ER		G3VM-21ER(TR)	
		40 V	3.5 A	7 A	G3VM-41BR	G3VM-41ER]	G3VM-41ER(TR)
DIP6		60 V	2.5 A	-	G3VM-61BR	G3VM-61ER	50 pcs.	G3VM-61ER(TR)	1,500 pcs.
	(0.01.110)	60 V	3 A	6 A	G3VM-61BR1	G3VM-61ER1		G3VM-61ER1(TR)	
		100 V	2 A	4 A	G3VM-101BR	G3VM-101ER		G3VM-101ER(TR)	

* The AC peak and DC value are given for the load voltage and continuous load current.

Note: To order tape packaging for Relays with surface-mounting terminals, add "(TR)" to the end of the model number.

G3VM-BRD/ER

■Absolute Maximum Ratings (Ta = 25°C)

	Item		Symbol	G3VM-21BR G3VM-21ER	G3VM-41BR G3VM-41ER	G3VM-61BR G3VM-61ER	G3VM-61BR1 G3VM-61ER1	G3VM-101BR G3VM-101ER	Unit	Measurement conditions	
LED forward current			IF	30							
Repetitive peak LED forward current		IFP			А	100 µs pulses, 100 pps					
LED forward current reduction rate		∆IF/°C	-0.3						Ta≥25°C		
	LED reverse vol	tage	VR			5			V		
Connection temperature		TJ			125						
Load voltage (AC peak/DC)		VOFF	20	40	6	10	100	V			
	Continuous	Connection A	lo	4	3.5	2.5	3	2		Connection A:	
	load current	Connection B		lo	lo	_	A	AC peak/DC			
Ħ		Connection C		8	7	Ι	6	4		Connection B and C: DC	
Output	01	Connection A	∆lo/°C	-40	-35	-22	-30	-20	mA/°C		
0	ON current reduction rate	Connection B		-40	-55		-30	-20		Ta ≥ 25°C	
	reduction rate	Connection C		-80	-70	_	-60	-40		1	
	Pulse ON currer	nt	lop	12	10.5	7.5	9	6	Α	t=100 ms, Duty=1/10	
Connection temperature		perature	TJ		125						
Dielectric strength between I/O (See note 1.)		VI-0		2,500				Vrms	AC for 1 min		
An	nbient operating t	emperature	Та	-40 to	+85	-20 to +85	-40 te	o +85	°C	With no icing or	
An	nbient storage ter	nperature	Tstg	-55 to	+125	-40 to +125	-55 to	+125	°C	condensation	
So	Idering temperatu	ire	-			260			°C	10 s	

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Connection Diagram

Connection Diag	ram
Connection A	$\begin{bmatrix} 1 & 6 \end{bmatrix} - \begin{bmatrix} Load \\ - \end{bmatrix} \begin{bmatrix} 2 & 5 \end{bmatrix} = 0 \xrightarrow{AC} \begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} 2 \\ - \end{bmatrix} \begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} 0 \\ - \end{bmatrix} \begin{bmatrix} 0$
Connection B	
Connection C	

Note: Only connection A can be used for the G3VM-61BR/ER.

 Multi-contact-pair
 High-current and Multi-contact-pair
 Migh-current and Migh-delectric Line-output-capacitance
 Small and High-Line-output-capacitance

 High-delectric (2a, Zb, and faib)
 Low-OV-resistance
 dielectric-strength
 Current-limiting
 and use-OV-resistance
 Low-Output-capacitance
 Small and High-Strength

DIP SOP SSOP USOP VSON

G3VMBR
DER

■Electrical Characteristics (Ta = 25°C)

_												
	Ite	m	Symbol				G3VM-61BR G3VM-61ER				Measurement conditions	
	LED forward voltage			Minimum			1.18					
			VF	Typical	1.33					V	IF=10 mA	
				Maximum	1.48							
	Reverse current		IR	Maximum	10				μΑ	VR=5 V		
Input	Capacitance between terminals		Ст	Typical		70				pF	V=0, f=1 MHz	
ļ	Trigger LED forward		LED forward		0.	0.5 1 0.5				mA	lo=1 A	
	current		1-1	Maximum			3				10=1 A	
	Release LE current	D forward	IFC	Minimum			0.1				IOFF=10 µA	
		Connection A	Connection A		Typical	20	30	65	40	100		G3VM-21BR/21ER/41BR/41ER/
	Maximum	Connection A		Maximum	50	60	100	70	200		61BR1/61ER1/101BR/101ER :	
	resistance	Connection B	BON	Typical	10	15		20	50	mΩ	IF=5 mA, Io=2 A (Connection A and B),	
Dutput	with output ON	Connection C		Typical	5	8	-	10	25		lo=4 A (Connection C), t<1 s G3VM-61BR/ER : IF=10 mA, t=10 ms, lo=2 A	
-		age when the	ILEAK Typical Maximum		- 0.001			-		μA	VoFF=Load voltage ratings	
	relay is oper	า			1		0.01	1		μА		
	Capacitance terminals		Coff	Typical	1000 400 1000				pF	V=0, f=1 MHz		
	Capacitance between I/O terminals		Ci-o	Typical	0.8				pF	f=1 MHz, Vs=0 V		
		resistance between BLo		1000	1000			V⊦o=500 VDC, RoH≤60%				
1/0	I/O terminals		HI-O	Typical			10 ⁸			19122	vi-0=500 vDC, R0H≤60%	
Τι	Tum-ON time Tum-OFF time		Typical		2.5	2.5 2 1 2			G3VM-21BR/21ER/41BR/41ER/ 61BR1/61ER1/101BR/101ER :			
				Maximum	5	5 1.5		5		ms	IF=5 mA, RL=200 Ω, VDD=20 V (See note 2.)	
т			TOFF	Typical	0.	0.1 0.2 0.1				G3VM-61BR/ER : IF=10 mA, RL=200 Ω, VDD=20 V		
				Maximum	1	1	0.4	1			(See note 2.)	

Note: 2. Turn-ON and Turn-OFF Times

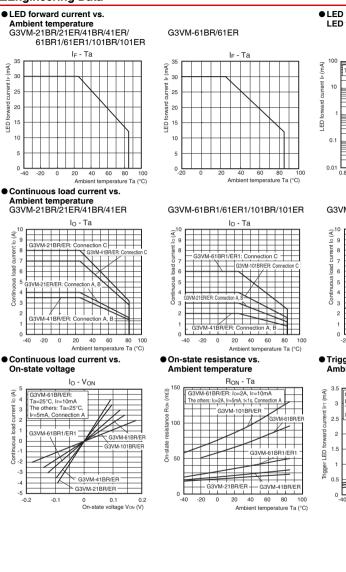
Recommended Operating Conditions

For usage with high reliability, Recommended Operation Conditions is a measure that takes into account the derating of Absolute Maximum Ratings and Electrical Characteristics.

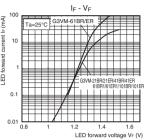
Each item on this list is an independent condition, so it is not simultaneously satisfy several conditions.

Item	Symbol				G3VM-61BR G3VM-61BR1 G3VM-61ER G3VM-61ER1		G3VM-101BR G3VM-101ER	Unit
Load voltage (AC peak/DC) VD		Maximum	16	32	4	8	80	V
		Minimum	5 10 25		10	1	5	
Operating LED forward current	IF	Typical			-	10 25		mA
		Maximum			20			
Continuous load current (AC peak/DC)	lo	Maximum	4	3.5	2.5	3	2	Α
Ambient operating temperature	Та	Minimum	-20					°C
Ambient operating temperature	Id	Maximum	6	5	60	65		-C
■Spacing and Insula	tion							

Item	Minimum	Unit
Creepage distances	7.0	
Clearance distances	7.0	mm
Internal isolation thickness	0.4	

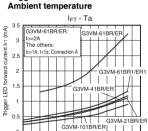

Low

Engineering Data


.ED forward current IF (mA)

₹


Continuous



LED forward current vs. LED forward voltage

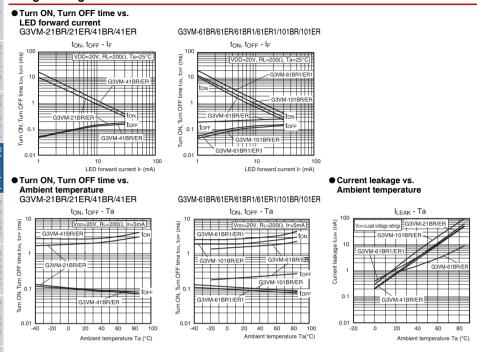
G3VM-61BR/61ER

20 40 60

-20

Multi-contact-pair (2a, 2b, and 1a1b)

High-current and Low-ON-resistance

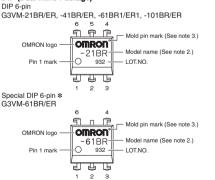

High-dielectric-

100

80

Ambient temperature Ta (°C)

Engineering Data



Appearance / Terminal Arrangement / Internal Connections

Appearance

Low-ON-resistance

DIP (Dual Inline Package)

 Terminal Arrangement/Internal Connections (Top View)

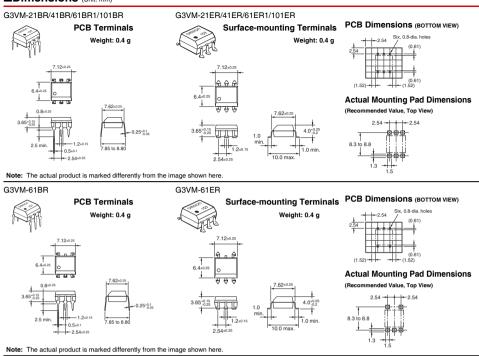
G3VM-21BR/ER, -41BR/ER, -61BR1/ER1, -101BR/ER

G3VM-61BR/ER

Note: 1. The actual product is marked differently from the image shown here.

Note: 2. "G3VM" does not appear in the model number on the Relay.

Note: 3. The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.


* The external dimensions of the standard DIP 6-pin are the same, but the number of terminals is different.

G3VM-BR_/ER

G3VM-□BR□/□ER□

MOS FET Relays

Dimensions (Unit: mm)

■Approved Standards

UL recognized	71
---------------	----

Approved Standards	Contact form	File No.		
UL (recognized)	1a (SPST-NO)	E80555		

Safety Precautions

• Refer to the Common Precautions for All MOS FET Relays for precautions that apply to all MOS FET Relays.

DIP

output-capacitance Small and High- Certified Models with Low-ON-resistance load-voltage Standards Certification

High-current and Low-ON-resistance

High-dielectric-