

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOS FET Relays

M-353B/B1/E/E1

Analog-switching MOS FET Relay with SPST-NC Contact. General-purpose Models Added.

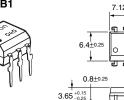
- Switches minute AC and DC analog signals.
- General-purpose models (with high ON resistance) added.
- RoHS compliant

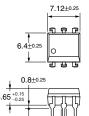
■ Application Examples

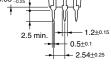
- Electronic automatic exchange systems
- · Security systems
- Datacom (modem) systems
- FA systems and Measurement devices

Note: The actual product is marked differently from the image shown here.

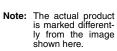
■ List of Models

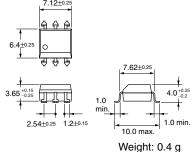

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NC	PCB terminals	350 VAC	G3VM-353B	50	
			G3VM-353B1		
	Surface-mounting terminals		G3VM-353E		
			G3VM-353E1		
			G3VM-353E(TR)		1,500
			G3VM-353E1(TR)		


■ Dimensions

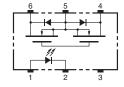

Note: All units are in millimeters unless otherwise indicated.

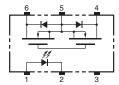
Note: The actual product is marked different-



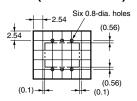


7.62±0.25 -0.25^{+0.1}_{-0.05} 7.85 to 8.80 Weight: 0.4 g


G3VM-353E/E1


■ Terminal Arrangement/Internal Connections (Top View)

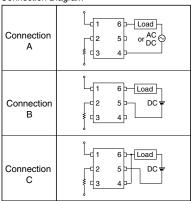
G3VM-353B/B1


G3VM-353E/E1

G3VM-353E/E1

■ PCB Dimensions (Bottom View)

G3VM-353B/B1

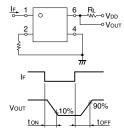

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

■ Absolute Maximum Ratings (Ta = 25°C)

Item			Symbol	Rating	Unit	Measurement Conditions		
Input LED forward current		I _F	50	mA				
	Repetitive peak LED forward current		I _{FP}	1	Α	100 μs pulses, 100 pps		
	LED forward current reduction rate		Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$		
	LED reverse voltage		V_R	5	V			
	Connection temperature		T _j	125	°C			
Output	Load voltage (AC peak/DC)		V_{OFF}	350	V			
	Continuous load current (AC peak/DC)	Connection A	Io	150 (100)	mA			
		Connection B		150 (100)				
		Connection C		300 (200)				
	ON current reduction rate	Connection A	Δ I _{ON} /°C	-1.5 (-1)	mA/°C	$T_a \ge 25^{\circ}C$		
		Connection B		-1.5 (-1)				
		Connection C		-3.0 (-2)				
	Connection temperature		T _j	125	°C			
Dielectric strength between input and output (See note 1.)		V _{I-O}	2,500	V_{rms}	AC for 1 min			
Operating temperature		T _a	-40 to +85	°C	With no icing or condensation			
Storage temperature			T_{stg}	-55 to +125	°C	With no icing or condensation		
Soldering temperature (10 s)				260	°C	10 s		

 The dielectric strength between the input and output was checked by applying voltage be-tween all pins as a group on the LED side and all pins as a group on the light-receiving side. Note:

Connection Diagram


Values in parentheses are for the G3VM-353B1/E1.

■ Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	t LED forward voltage		V _F	1.0	1.15	1.3	٧	I _F = 10 mA
	Reverse current		I _R			10	μΑ	V _R = 5 V
	Capacity between terminals Trigger LED forward current		Ст		30		pF	V = 0, f = 1 MHz
			I _{FT}		1	3	mA	I _{OFF} = 10 μA
Output	Maximum resistance with output ON	Connection A	R _{ON}		15 (27)	25 (50)	Ω	I _O = 150 mA (100 mA)
		Connection B			8 (20)	14 (43)	Ω	I _O = 150 mA (100 mA)
		Connection C			4 (10)	7 ()	Ω	I _O = 300 mA (200 mA)
	Current leakage when the relay is open		I _{LEAK}		0.0105 (0.003)	1.0	μА	I _F = 5 mA, V _{OFF} = 350 V
	Capacity between terminals A Connection		C _{OFF}		85 (30)		pF	$V = 0$, $f = 1MHz$, $I_F = 5 \text{ mA}$
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, Vs = 0 V	
Insulation resistance		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC},$ $R_{oH} \le 60\%$	
Turn-ON time		t _{ON}		0.1 (0.25)	1.0 (0.5)	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		1.0 (0.5)	3.0 (1)	ms	V _{DD} = 20 V (See note 2.)	
Values i	n narentheses are for th	o G2V/M 252B1/I	<u> </u>			!		ļ.

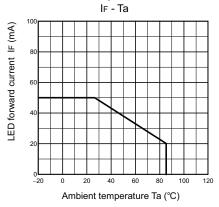
Note:

2. Turn-ON and Turn-OFF Times

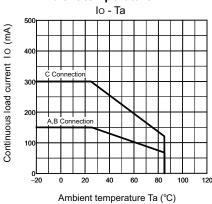
Values in parentheses are for the G3VM-353B1/E1.

■ Recommended Operating Conditions

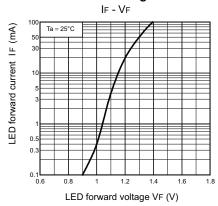
Use the G3VM under the following conditions so that the Relay will operate properly.

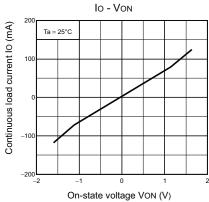

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			280	V
Operating LED forward current	I _F	5		25	mA
Continuous load current (AC peak/DC)	I _o			150 (100)	mA
Operating temperature	T _a	- 20		65	°C

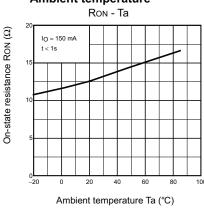
Values in parentheses are for the G3VM-353B1/E1

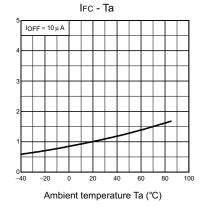

■ Engineering Data

G3VM-353B/E

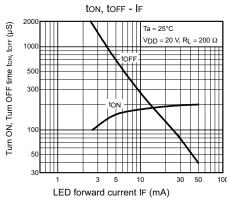

LED forward current vs. Ambient temperature


Continuous load current vs. Ambient temperature

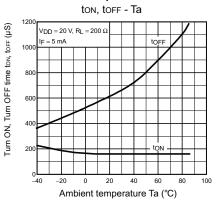

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage

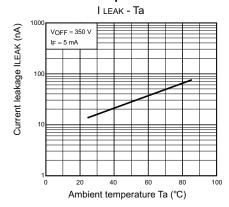
On-state resistance vs. Ambient temperature



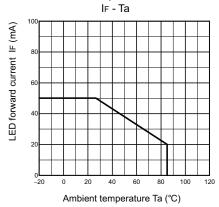
Trigger LED forward current vs. Ambient temperature



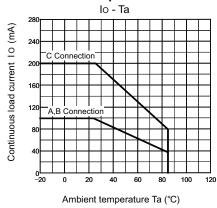
Trigger LED forward current IFC(mA)


Turn ON, Turn OFF time vs. LED forward current

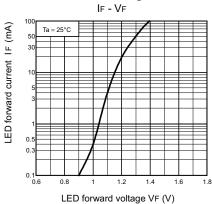
Turn ON, Turn OFF time vs. Ambient temperature

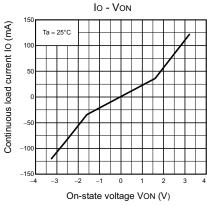


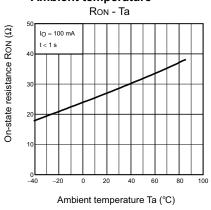
Current leakage vs. Ambient temperature

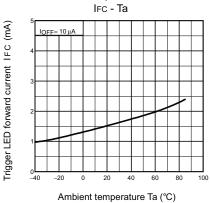


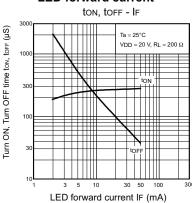
■ Engineering Data G3VM-353B1/E1

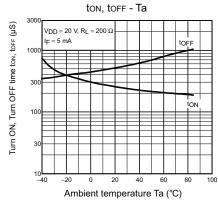

LED forward current vs. Ambient temperature

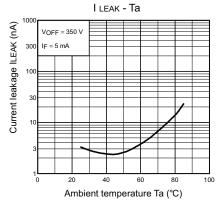

Continuous load current vs. Ambient temperature

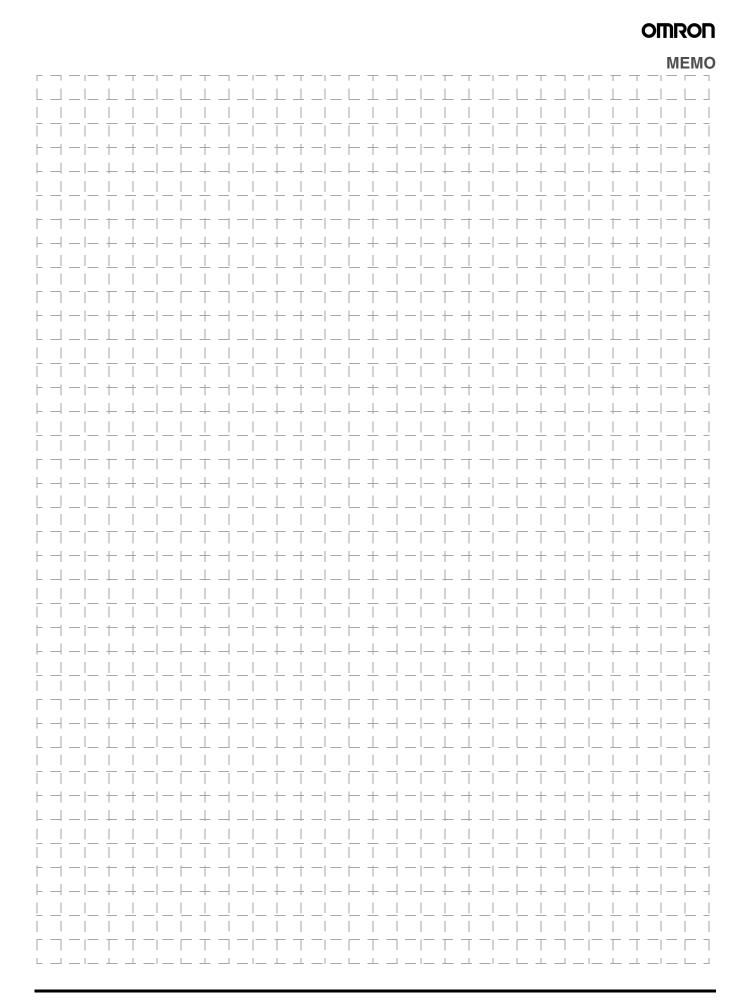

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current



Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON: **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

Specifications subject to change without notice