: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MOS FET Relays

G3VM-353B/B1/E/E1

Analog-switching MOS FET Relay with SPST-NC Contact. General-purpose Models Added.

- Switches minute AC and DC analog signals.
- General-purpose models (with high ON resistance) added.
- RoHS compliant

- Application Examples

- Electronic automatic exchange systems
- Security systems
- Datacom (modem) systems
- FA systems and Measurement devices

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NC	PCB terminals	350 VAC	G3VM-353B	50	---
			G3VM-353B1		
	Surface-mounting terminals		G3VM-353E		
			G3VM-353E1		
			G3VM-353E(TR)	---	1,500
			G3VM-353E1(TR)		

Dimensions
Note: All units are in millimeters unless otherwise indicated.

Note: The actual product is marked differently from the image shown here.

 7

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item			Symbol	Rating	Unit	Measurement Conditions	Note:		
Input	LED forward current		I_{F}	50	mA			1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side. Connection Diagram	
	Repetitive peak LED forward current		$\mathrm{I}_{\text {FP }}$	1	A	100μ s pulses, 100 pps			
	LED forward current reduction rate		$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$			
	LED reverse voltage		$V_{\text {R }}$	5	V			Connection A	
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$				
Output	Load voltage (AC peak/DC)		$\mathrm{V}_{\text {OFF }}$	350	V				
	Continuous load current (AC peak/DC)	Connection A	I_{0}	150 (100)	mA				
		Connection B		150 (100)					
		Connection C		300 (200)				Connection B	
	ON current reduction rate	Connection A	$\triangle \mathrm{ION}^{\prime}{ }^{\circ} \mathrm{C}$	-1.5 (-1)	mA/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}} \geq 25^{\circ} \mathrm{C}$			
		Connection B		-1.5 (-1)					
		Connection C		-3.0 (-2)				Connection C	
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$				
Dielectric strength between input and output (See note 1.)			V_{1-0}	2,500	$\mathrm{V}_{\text {rms }}$	AC for 1 min			

Values in parentheses are for the G3VM-353B1/E1
Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item			Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage		V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current		I_{FT}	---	1	3	mA	$\mathrm{I}_{\text {OFF }}=10 \mu \mathrm{~A}$
Output	Maximum resistance with output ON	Connection A	R_{ON}	---	15 (27)	25 (50)	Ω	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}(100 \mathrm{~mA})$
		Connection B		---	8 (20)	14 (43)	Ω	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}(100 \mathrm{~mA})$
		Connection C		---	4 (10)	7 (---)	Ω	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}(200 \mathrm{~mA})$
	Current leakage when the relay is open		$\mathrm{I}_{\text {LEAK }}$	---	$\begin{array}{\|l} 0.0105 \\ (0.003) \end{array}$	1.0	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OFF }}=350 \mathrm{~V}$
	Capacity between terminals A Connection		$\mathrm{C}_{\text {OFF }}$	---	85 (30)	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$
Capacity between I/O terminals			$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance			$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$
Turn-ON time			t_{ON}	---	0.1 (0.25)	1.0 (0.5)	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}^{\prime}}=200 \Omega$,
Turn-OFF time			$\mathrm{t}_{\text {OFF }}$	---	1.0 (0.5)	3.0 (1)	ms	

2. Turn-ON and Turn-OFF Times

Values in parentheses are for the G3VM-353B1/E1.

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	280	V
Operating LED forward current	I_{F}	5	---	25	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	$150(100)$	mA
Operating temperature	T_{a}	-20	---	65	${ }^{\circ} \mathrm{C}$

Values in parentheses are for the G3VM-353B1/E1

G3VM-353B/E

Continuous load current vs.
On-state voltage
lo - Von

On-state voltage VON (V)

Turn ON, Turn OFF time vs. LED forward current
ton, toff - IF

Continuous load current vs. Ambient temperature

Io - Ta

On-state resistance vs.
Ambient temperature
Ron - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Turn ON, Turn OFF time vs. Ambient temperature
ton, toff - Ta

LED forward current vs. LED forward voltage

IF - VF

Trigger LED forward current vs. Ambient temperature

IfC - Ta

Current leakage vs.
Ambient temperature

> I LEAK - Ta

Engineering Data

G3VM-353B1/E1

LED forward current vs.
Ambient temperature
IF - Ta

Continuous load current vs. On-state voltage
lo - Von

Turn ON, Turn OFF time vs. LED forward current
ton, toFF - IF

Continuous load current vs. Ambient temperature

On-state resistance vs.
Ambient temperature
Ron - Ta

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Turn ON, Turn OFF time vs.
Ambient temperature
ton, toff - Ta

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature
IFC - Ta

Current leakage vs.
Ambient temperature

\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

\qquad
\qquad

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

