: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

G3VM-41GR5

MOS FET Relays

MOS FET Relays with Low Output Capacitance and ON Resistance ($\mathbf{C} \times \mathbf{R}=$ $10 \mathrm{pF} \cdot \Omega$) in a $40-\mathrm{V}$ Load Voltage Model.

- ON resistance of 1Ω (typical) suppresses output signal attenuation.
- Leakage current of 1.0 nA max. when output relay is open.

RoHS compliant

Note: The actual product is marked differently from the image shown here.

■Application Examples

- Semiconductor test equipment
- Test \& Measurement equipment
- Communication equipment
- Data loggers

Terminal Arrangement/Internal Connections

Note: The actual product is marked differently from the image shown here. * The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

List of Models

Package type	Contact form	Terminals	Load voltage (peak value) $*$	Model	Minimum package quantity	
SOP4	1a (SPST-NO)	Surface-mounting Terminals	40 V	G3VM-41GR5	100	-
		G3VM-41GR5 (TR)	-	2,500		

* The AC peak and DC value are given for the load voltage.

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Rating	Unit	Measurement conditions
LED forward current	IF	50	mA	
\# LED forward current reduction rate	$\Delta \mathrm{F} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
드 LED reverse voltage	VR	5	V	
Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$	
L Load voltage (AC peak/DC)	Voff	40	V	
亏 Continuous load current (AC peakDC)	10	300	mA	
O\% ON current reduction rate	$\Delta \mathrm{lo} /{ }^{\circ} \mathrm{C}$	-3.0	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
O Connection temperature	TJ	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between I/O (See note 1.)	Vi-O	1500	Vrms	AC for 1 min
Ambient operating temperature	Ta	-20 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Ambient storage temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature	-	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{IF}=10 \mathrm{~mA}$
$\underset{7}{7}$ Reverse current	IR	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
드 Capacity between terminals	Ст	-	15	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Trigger LED forward current	IFT	-	-	4	mA	$\mathrm{lo}=100 \mathrm{~mA}$
\pm Maximum resistance with output ON	Ron	-	1.0	1.5	Ω	$\mathrm{lf}=5 \mathrm{~mA}, \mathrm{lo}=300 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s}$
윽 Current leakage when the relay is open	ILEAK	-	-	1.0	nA	Voff $=30 \mathrm{~V}, \mathrm{Ta}=50^{\circ} \mathrm{C}$
0 Capacity between terminals	Coff	-	10	14	pF	$\mathrm{V}=0, \mathrm{f}=100 \mathrm{MHz}, \mathrm{t}<1 \mathrm{~s}$
Capacity between I/O terminals	Cl-O	-	0.8	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance between //0 terminals	Ri-o	1000	-	-	$\mathrm{M} \Omega$	V I-O $=500 \mathrm{VDC}, \mathrm{RoH} \leq 60 \%$
Turn-ON time	ton	-	-	0.5	ms	$\mathrm{IF}=10 \mathrm{~mA}, \mathrm{RL}=200 \Omega$,
Turn-OFF time	toff	-	-	0.5	ms	Vdd $=20 \mathrm{~V}$ (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	VDD	-	-	32	V
Operating LED forward current	IF	10	-	30	mA
Continuous load current (AC peak/DC)	lo	-	-	300	mA
Ambient operating temperature	Ta	25	-	60	${ }^{\circ} \mathrm{C}$

■ Engineering Data

LED forward current vs. Ambient temperature

Continuous load current vs. On-state voltage

Turn ON, Turn OFF time vs. LED forward current

Output terminal capacitance vs. Load voltage

Continuous load current vs. Ambient temperature

On-state resistance vs. Ambient temperature
Ron - Ta

Turn ON, Turn OFF time vs. Ambient temperature

LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs. Load voltage

Safety Precautions

- Refer to "Common Precautions" for all G3VM models.

Appearance

SOP (Small Outline Package)

SOP4

Note: The actual product is marked differently from the image shown here.

* The indentation in the corner diagonally opposite from the pin 1 mark is from a pin on the mold.

Dimensions

Surface-mounting Terminals
Weight: 0.1 g

Actual Mounting Pad

 Dimensions(Recommended Value, TOP VIEW)

Note: The actual product is marked differently from the image shown here.

