: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

OmROn

MOS FET Relays

Compact, General-purpose, Analogswitching MOS FET Relays, with Dielectric Strength of 5 kVAC between I/O Using Optical Isolation.

- Trigger LED forward current of 2 mA (maximum) facilities power saving designs.
- Switches minute analog signals.
- Continuous load current of 90 mA .

RoHS compliant

NEW
Note: The actual product is marked differently from the image shown here.

Refer to "Common Precautions".

Application Examples

- Power meter
- Measurement devices
- Security systems
- Industrial equipment

List of Models

Contact form	Terminals	Load voltage (peak value) (See the note.)	Model	Number per stick	Number per tape
SPST-NO	PCB terminals	600 V	G3VM-601AY	100	---
	Surface-mounting terminals		G3VM-601DY		
			G3VM-601DY(TR)	---	1,500

Note: The AC peak and DC value are given for the load voltage.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-601AY

Note: The actual product is marked differently from the image shown here.

G3VM-601DY

Note: The actual product is marked differently from the image shown here.

Terminal Arrangement/Internal Connections (Top View)

G3VM-601AY

G3VM-601DY

Note: The actual product is marked differently from the image shown here.

PCB Dimensions (Bottom View)
G3VM-601AY

■ Actual Mounting Pad Dimensions

(Recommended Value, Top View)
G3VM-601DY

© Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	30	mA	
	Repetitive peak LED forward current	I_{FP}	1	A	100μ s pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.3	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Load voltage (AC peak/DC)	$\mathrm{V}_{\text {OFF }}$	600	V	
	Continuous load current (AC peak/DC)	I_{0}	90	mA	
	ON current reduction rate	$\Delta \mathrm{I}^{\prime} /{ }^{\circ} \mathrm{C}$	-0.9	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Pulse ON current	$\mathrm{I}_{\text {op }}$	0.27	A	$\mathrm{t}=100 \mathrm{~ms}$, Duty $=1 / 10$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{\text {- }} \mathrm{O}$	5,000	Vrms	AC for 1 min
Operating temperature		T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)		---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.45	1.63	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	40	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	$\mathrm{I}_{\text {FT }}$	---	0.3	2	mA	$\mathrm{I}_{\mathrm{O}}=90 \mathrm{~mA}$
Output	Maximum resistance with output ON	$\mathrm{R}_{\text {ON }}$	---	30	40	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{l}_{\mathrm{O}}=90 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s} \end{aligned}$
				45	60		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=90 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open	$I_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=600 \mathrm{~V}$
	Capacity between terminals	CofF	---	75	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Capacity between I/O terminals		$\mathrm{C}_{1-\mathrm{O}}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1 \mathrm{l}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time		tON	---	0.2	1	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega$,
Turn-OFF time		tOFF	---	0.2	1	ms	$V_{D D}=10 \mathrm{~V}$ (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}	---	---	480	V
Operating LED forward current	I_{F}	3	5	20	mA
Continuous load current (AC peak/DC)	I_{O}	---	---	90	mA
Operating temperature	T_{a}	-20	---	65	${ }^{\circ} \mathrm{C}$

Engineering Data

Load Current vs. Ambient Temperature G3VM-601AY(DY)

