

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MOS FET Relays G3VM-81LR

World's Smallest SSOP Package MOS FET Relay* with Low Output Capacitance and ON Resistance ($C \times R = 37.5 pF \cdot \Omega$) in a 80-V Load Voltage Model.

- Turn-on time = 0.1 ms (typ.), Turn-off time = 0.15 ms (typ.)
- RoHS compliant

*Information correct as of May 2007, according to data obtained by OMRON.

■ Application Examples

- Semiconductor inspection tools
- · Measurement devices
- Broadband systems
- Data loggers

Note: The actual product is marked differently from the image shown

■ List of Models

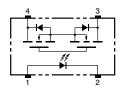
Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
SPST-NO	Surface-mounting	80 VAC	G3VM-81LR	
	terminals		G3VM-81LR(TR05)	500
			G3VM-81LR(TR)	1,500

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-81LR

4.2 1.9 1.4 dia. (0.3) 1.27 2.04 (0.46)


Note: A tolerance of ± 0.1 mm applies to all dimensions unless otherwise specified.

Weight: 0.03 g

Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

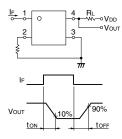
G3VM-81LR

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81LR

■ Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}		Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V _R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V_{OFF}	80	٧	
	Continuous load current	I _o	120	mA	
	ON current reduction rate	Δ I _O /°C	-1.2	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T_j	125	°C	
Dielectric strength between input and output (See note 1.)		V _{I-O}	1,500	V_{rms}	AC for 1 min
Ambient operating temperature		T _a	-20 to +85	°C	With no icing or condensation
Storage temperature		T_{stg}	-40 to +125	°C	With no icing or condensation
Soldering temperature			260	°C	10 s

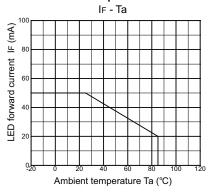

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Note:

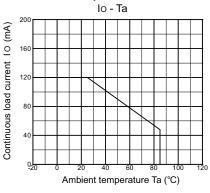
■ Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		2	5	mA	I _O = 120 mA	
Output	Maximum resistance with output ON	R _{ON}		7.5	12	Ω	I _F = 10 mA, I _O = 120 mA, t = 10 ms	
	Current leakage when the relay is open	I _{LEAK}		100	200	pА	V _{OFF} = 80 V, T _a = 60°C	
	Capacity between terminals	C _{OFF}		5	7	pF	V = 0, f = 100 MHz, t < 1 s	
Capacit	Capacity between I/O terminals			0.8		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC}, R_{oH} \le 60\%$	
Turn-ON time		t _{ON}		0.1	0.25	ms	$I_F = 10 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		0.15	0.2	ms	$V_{DD} = 20 \text{ V (See note 2)}$	

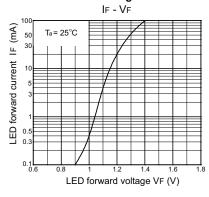
Note: 2. Turn-ON and Turn-OFF Times

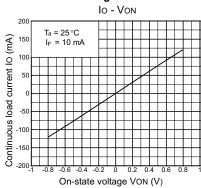

■ Recommended Operating Conditions

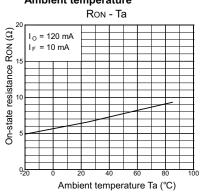
Use the G3VM under the following conditions so that the Relay will operate properly.

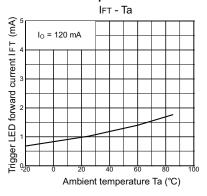

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			64	V
Operating LED forward current	I _F	10		30	mA
Continuous load current (AC peak/DC)	Io			120	mA
Operating temperature	T _a	25		60	°C

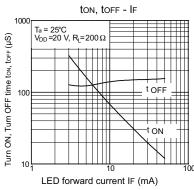
■ Engineering Data

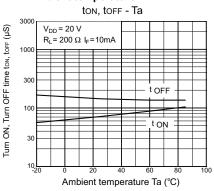

LED forward current vs. Ambient temperature

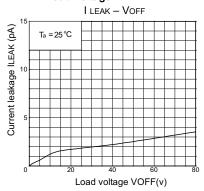

Continuous load current vs. Ambient temperature

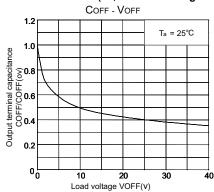

LED forward current vs. LED forward voltage


Continuous load current vs. On-state voltage


On-state resistance vs. Ambient temperature


Trigger LED forward current vs. Ambient temperature


Turn ON, Turn OFF time vs. LED forward current


Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Load voltage

Output terminal capacitance COFF/COFF(ov) vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON **OMRON ELECTRONIC**

COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

MOS FET Relays **G3VM-81LR**