

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

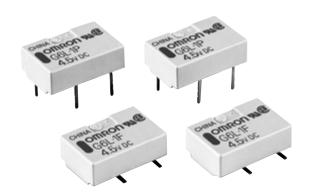
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Ultra-thin Low Signal Relay **G6L**

Extremely Thin SPST-NO Flat Relay, One of the Thinnest Relays in the World

- For high-density mounting and slim finished packaging, G6L uses 20% less mounting area and 67% less volume in comparison with the G5V-1 relay.
- Measures just 7.0 (W) x 10.6 (L) x 4.2 (H) mm for surfacemount or 3.8 (H) for through-hole.
- High dielectric strength: 1,000 VAC between coil and contacts and 750 VAC between contacts of the same polarity.
- Conforms to FCC Part 68 impulse withstand voltage rating of 1.5kV for 10 x 160 μs.
- Conforms to UL60950 (File No. E41515) / CSA C22.2 No. 60950 (File No. LR31928).
- Use of lead completely eliminated.

Ordering Information

Contact form	Construction	Mounting type	Model
SPST-NO	Fully sealed	Through-hole terminal	G6L-1P
		Surface-mount terminal	G6L-1F

 $\textbf{Note: 1.} \ \ \textbf{When ordering, add the rated coil voltage to the model number.}$

Example: G6L-1P 12 VDC

Rated coil voltage

2. When ordering tape packing, add "-TR" to the model number.

Example: G6L-1F-TR 12 VDC

Tape packing

Be sure since "-TR" is not part of the relay model number, it is not marked on the relay case.

Model Number Legend:

$$\mathbf{G6L} \stackrel{\square}{=} \frac{1}{2} \stackrel{\square}{=} \frac{\square}{4}$$

1. Relay function

None: Non-latching

2. Contact form

1: SPST-NO

3. Terminal shape

P: PCB terminals

F: Surface-mount terminals

4. Packaging

None: Tube packaging

TR: Tape and reel packaging

■ Application Examples

- Peripherals of MODEM/PC
- Telephones
- · Office automation machines
- Audio-visual products

- Communications equipment
- · Measurement devices
- Amusement equipment
- Security equipment

Specifications

■ Contact Ratings

Item	Resistive load	
Contact mechanism	Single crossbar	
Rated load	0.3 A at 125 VAC, 1 A at 24 VDC	
Carry current	1 A	
Max. operating voltage	125 VAC, 60 VDC	
Max. operating current	1 A	

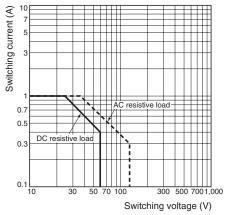
■ Coil Ratings

Item	Voltage Rating				
Rated voltage	3 VDC	4.5 VDC	5 VDC	12 VDC	24 VDC
Rated current	60.0 mA	40.0 mA	36.0 mA	15.0 mA	9.6 mA
Coil resistance	50.0 Ω	112.5 Ω	139.0 Ω	800.0 Ω	2,504.0 Ω
Pick-up voltage	75% max. of rat	75% max. of rated voltage			
Dropout voltage	10% min. of rate	0% min. of rated voltage			
Maximum voltage	150% of rated v	150% of rated voltage			130% of rated voltage
Power consumption	Approx. 180 mV	V			Approx. 230 mW

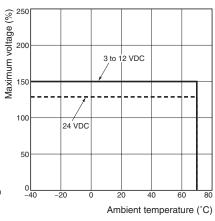
Note: 1. The rated current and coil resistance are measured at a coil temperature of 23°C with a tolerance of ±10%.

- 2. The operating characteristics are measured at a coil temperature of 23°C.
- 3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

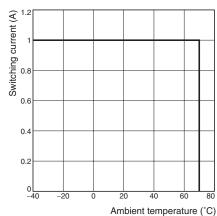
■ Characteristics


Item		Non-latching Relays	
		G6L-1P, G6L-1F	
Contact resistance (See Note 1)		100 m Ω max.	
Operate time (See Note 2)		5 ms max. (approx. 1.1 ms)	
Release time (See Note 2)		5 ms max. (approx. 0.4 ms)	
Insulation resistance (See Note 3)		1,000 M Ω min. (at 500 VDC)	
Dielectric strength	Coil and contacts	1,000 VAC, 50/60 Hz for 1 min	
	Contacts of same poles	750 VAC, 50/60 Hz for 1 min	
Surge withstand voltage	Coil and contacts	1,500 VAC, $10 \times 160 \mu s$	
Vibration	Mechanical durability	10 to 55 Hz, 1.65-mm single amplitude (3.3-mm double amplitude)	
	Malfunction durability	10 to 55 Hz, 1.65-mm single amplitude (3.3-mm double amplitude)	
Shock	Mechanical durability	1,000 m/s ²	
	Malfunction durability	100 m/s ²	
Service life	Mechanical	5,000,000 operations min. (at 36,000 operations/hour)	
	Electrical	100,000 operations min. (with a rated load at 1,800 operations/hour)	
Failure rate (P level) (See Note 4)		1 mA at 5 VDC	
Ambient temperature		Operating: -40°C to 70°C (with no icing or condensation)	
Humidity		Operating: 5% to 85% RH	
Weight		Approx. 0.6 g	

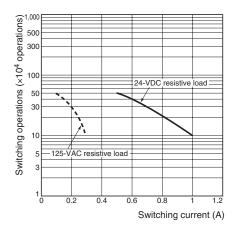
Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a fall-of-potential method.


- 2. Values in parentheses are actual values.
- 3. The insulation resistance was measured with a 500-VDC Megger Tester applied to the same parts as those used for checking the dielectric strength.
- 4. This value was measured at a switching frequency of 120 operations/min. This value may vary, depending on switching frequency, operating conditions, expected reliability level of the relay, etc. It is always recommended to double-check relay suitability under actual load conditions.
- 5. The above values are initial values.

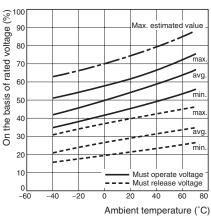
Engineering Data


Maximum Switching Capacity

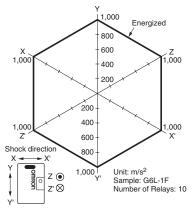
Ambient Temperature vs. Maximum Voltage



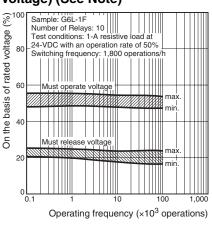
Ambient Temperature vs. Switching Current



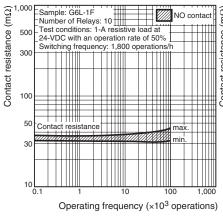
Note: "Maximum Voltage" is the maximum voltage that can be applied to the relay coil.


Endurance

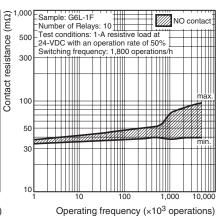
Ambient Temperature vs. Must Operate or Must Release Voltage



Shock Malfunction

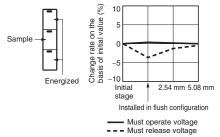


Conditions: Shock is applied in $\pm X$, $\pm Y$, and $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

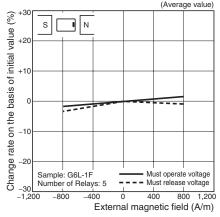

Electrical Endurance (with Must Operate and Must Release Voltage) (See Note)

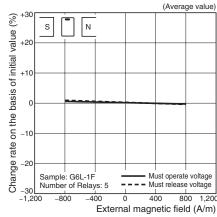
Electrical Endurance (Contact Resistance) (See Note)

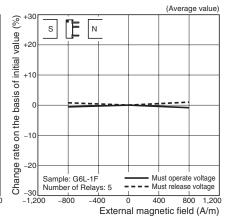
Contact Reliability Test (Contact Resistance) (See Note)

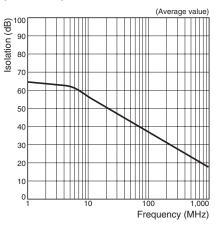

Note: The tests were conducted at an ambient temperature of 23°C.

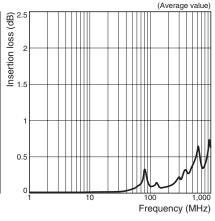
Mutual Magnetic Interference

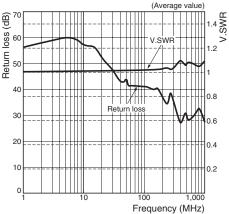

Sample Use and the stage of the


- - - Must release voltage

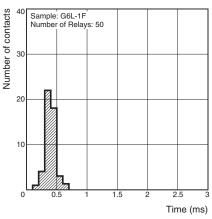

Mutual Magnetic Interference

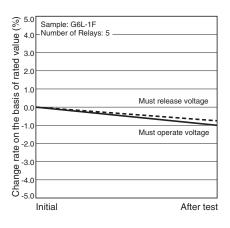

External Magnetic Interference




High-frequency Characteristics (Isolation)

High-frequency Characteristics (Insertion Loss)

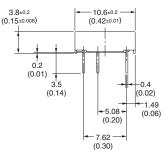

High-frequency Characteristics (Return Loss, V.SWR)


Must Operate and Must Release Time Distribution (See Note)

Number of contacts Sample: G6L-1F Number of Relays: 50 Must operate time Must release time 20 10 Time (ms)

Distribution of Bounce Time (See Note)

Vibration Resistance


Note: The tests were conducted at an ambient temperature of 23ºC.

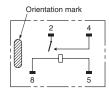
Dimensions

Unit: mm (inch)

G6L-1P

(0.28±0.01) 5.08 - (0.01) (0.20)

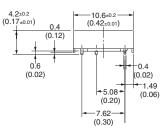
-7±0.2 -


 (0.28 ± 0.01)

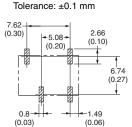
(0.33)

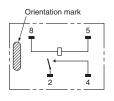
(Bottom View)

Tolerance: ±0.1 mm ◆5.08→ (0.20) 5.08 7.62 (0.30)


PCB Mounting Holes Terminal Arrangement/ **Internal Connections** (Bottom View)

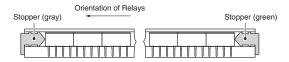
Note: Each value has a tolerance of ±0.3 mm.


G6L-1F



PCB Mounting Holes (Top View)

Terminal Arrangement/ Internal Connections (Top View)



Packaging

■ Tube Packaging

Relays in tube packaging are arranged so that the orientation mark of each Relay is on the left side.

Always confirm that the Relays are in the correct orientation when mounting the Relays to the PCBs.

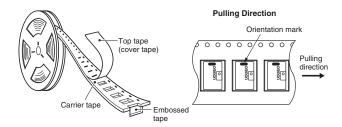
Tube length: 552 mm (stopper not included)

No. of Relays per tube: 50

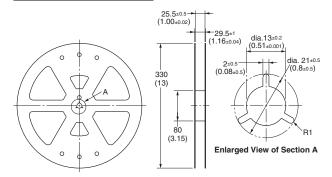
■ Tape and Reel Packaging (Surface-mount Terminal Relays)

When ordering Relays in tape and reel packaging, add the suffix "-TR" to the model number, otherwise the Relays in tube packing will be provided.

Tape type: TB2412R (Refer to EIAJ (Electronic Industries

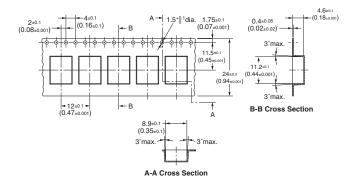

Association of Japan)

Reel type: R24D (Refer to EIAJ (Electronic Industries


Association of Japan)

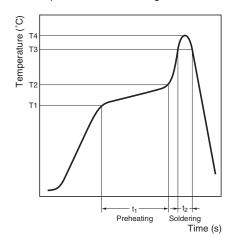
Relays per reel: 1,000

Direction of Relay Insertion

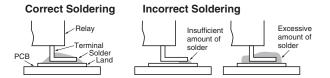


Reel Dimensions

Carrier Tape Dimensions


G6L-1F

Recommended Soldering Method


■ Temperature Profile According to IRS

When performing reflow-soldering, check the profile on an actual device after setting the temperature condition so that the temperatures at the relay terminals and the upper surface of the case do not exceed the limits specified in the following table.

Item Measuring position	Preheating (T1 to T2, t ₁)	Soldering (T3, t ₂)	Peak value (T4)
Terminal	150°C to 180°C, 120 s max.	180°C to 200°C, 20 to 30 s	245ºC max.
Upper surface of case			250°C max.

The thickness of cream solder to be applied should be within a range between 150 and 200 μm on OMRON's recommended PCB pattern.

Visually check that the Relay is properly soldered.

■ Approved Standards

UL approval: UL60950 (File No. E41515)

CSA approval: C22.2 No.60950 (File No. LR31928)

Contact form	Coil rating	Contact rating	Number of test operations
SPST-NO	G6L-1P and G6L-1F: 3 to 24 VDC	1A at 30 VDC 0.5A at 60 VDC 0.3A at 125 VAC	6,000

Precautions

■ Correct Use

<u>Handling</u>

Leave the Relays packed until just prior to mounting them.

Soldering

Solder: JIS Z3282, H63A

Soldering temperature: Approx. 250°C (At 260°C if the DWS method is used.)

Soldering time: Approx. 5 s max. (approx. 2 s for the first time and approx. 3 s for the second time if the DWS method is used.)

Be sure to adjust the level of the molten solder so that the solder will not overflow onto the PCB.

Claw Securing Force During Automatic Insertion

During automatic insertion of Relays, make sure to set the securing force of the claws to the following values so that the Relay characteristics will be maintained.

Direction A: 5.0 N max. Direction B: 5.0 N max. Direction C: 5.0 N max.

Secure the claws to the area indicated by shading.

Do not attach them to the center area or to only part of the Relay

Environmental Conditions During Operation, Storage, and Transportation

Protect the Relays from direct sunlight and keep the Relays under normal temperature, humidity, and pressure.

Maximum Voltage

The maximum voltage of the coil can be obtained from the coil temperature increase and the heat-resisting temperature of coil insulating sheath material. (Exceeding the heat-resisting temperature may result in burning or short-circuiting). The maximum voltage also involves important restrictions which include the following:

- Must not cause thermal changes in or deterioration of the insulating material.
- Must not cause damage to other control devices.
- · Must not cause any harmful effect on people.
- Must not cause fire.

Therefore, be sure not to exceed the maximum voltage specified in the catalog.

As a rule, the rated voltage must be applied to the coil. A voltage exceeding the rated value, however, can be applied to the coil provided that the voltage is less than the maximum voltage. It must be noted that continuous voltage application to the coil will cause a coil temperature increase thus affecting characteristics such as electrical life and resulting in the deterioration of coil insulation.

Coating

Relays mounted on PCBs may be coated or washed. Do not apply silicone coating or detergent containing silicone, otherwise the silicone coating or detergent may remain on the surface of the Relays.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, divide by 25.4

OMRON ELECTRONICS LLC

One East Commerce Drive Schaumburg, IL 60173

847-882-2288

OMRON CANADA, INC.

885 Milner Avenue Toronto, Ontario M1B 5V8

416-286-6465

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.omron.com/oei Canada - http://www.omron.com/oci

Cat. No. K119-E3-1

11/02

Specifications subject to change without notice

Printed in USA