: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Logical AND Function Adds
 Flexibility to Various Safety Circuits

Be sure to read the "Safety Precautions" on page 45.
For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Unit Variation

For details on G9SX, refer to page 2 and the subsequent pages.

Logical AND Function Adds Flexibility to I/O Expansion

- Facilitates partial or complete control system setup.
- Solid-state outputs (excluding Expansion Units).
- Detailed LED indications enable easy diagnosis.
- TÜV SÜD certification for compliance with IEC/EN61508 (SIL3), EN ISO13849-1 (PLe/Safety Category 4).
- Approved by UL and CSA.

Be sure to read the "Safety Precautions" on page 45.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Application Examples

Parts Processing Machine

- The entire device stops when the emergency stop switch is pressed.
- Only the processing section stops when the Safety Light Curtain is interrupted.

Operating Example
(1) The emergency stop switch is pressed

Machining Center

- When the Emergency Stop Switch is pressed, the entire machine will stop.
- When a door is open, the corresponding part will not be activated.

(1) The emergency stop
(2) The main door is opened. switch is pressed.

(3) The pallet changer door is opened.

(4) The tool changer door is

Semiconductor Manufacturing Equipment

- All of the equipment stops when the emergency stop switch is pressed.
- The processing section and conveyor section stop when the processing section cover is opened.
- Only the conveyor section stops when the conveyor section cover is opened.
(2) Processing section cover
(3) Conveyor section cover

Machine Tool

- When the Emergency Stop Switch is pressed, the entire machine will stop.
- If the left door is opened, the left drive section and transport section will stop.
- If the right door is opened, the right drive section and transport section will stop.

Operating Example

(1) The emergency stop switch is pressed.

(3) The right door is opened

Model Number Structure

Model Number Legend
Note: Please see "Ordering Information" below for the actual models that can be ordered.

1. Functions

AD/ADA: Advanced Unit
BC: Basic Unit
EX: Expansion Unit
2. Output Configuration (Instantaneous Safety Outputs)

0 : None
2: 2 outputs
3: 3 outputs
4: 4 outputs
3. Output Configuration (OFF-delayed Safety Outputs)

0: None
2: 2 outputs
4: 4 outputs
4. Output Configuration (Auxiliary Outputs)

1: 1 output
2: 2 outputs
5. Max. OFF-delay Time

Advanced Unit
T15: 15 s
T150: 150 s
Basic Unit
No indicator: No OFF delay
Expansion Unit
No indicator: No OFF delay
T: OFF delay
6. Terminal Block Type

RT: Screw terminals
RC: Spring-cage terminals

Ordering Information

List of Models

Advanced Unit

Safety outputs *3		Auxiliary outputs *4	Logical AND connection		No. of input channels	Max. OFF-delay time *1	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed *2		Inputs	Outputs					
3 (Semiconductor)	2	2 (Semiconductor)	1 (Semiconductor)	1 (Semiconductor)	1 or 2 channels	15 s	24 VDC	Screw terminals	G9SX-AD322-T15-RT
								Spring-cage terminals	G9SX-AD322-T15-RC
								Screw terminals	G9SX-AD322-T150-RT
						150 s		Spring-cage terminals	G9SX-AD322-T150-RC
2 (Semiconductor)			2 (Semiconductor)	2 (Semiconductor)				Screw terminals	G9SX-ADA222-T15-RT
						15 s		Spring-cage terminals	G9SX-ADA222-T15-RC
								Screw terminals	G9SX-ADA222-T150-RT
						150 s		Spring-cage terminals	G9SX-ADA222-T150-RC

*1. The OFF-delay time can be set in 16 steps as follows:
T15: 0/0.2/0.3/0.4/0.5/0.6/0.7/1/1.5/2/3/4/5/7/10/15 s
T150: 0/10/20/30/40/50/60/70/80/90/100/110/120/130/140/150 s
*2. The OFF-delayed output becomes an instantaneous output by setting the OFF-delay time to 0 s .
*3. P channel MOS-FET output
*4. PNP transistor output

Basic Unit

Safety outputs *1		Auxiliary outputs ${ }^{*} 2$		No. of input channels	Rated voltage	Terminal block type

*1. P channel MOS-FET output
*2. PNP transistor output

Expansion Unit

Safety outputs		Auxiliary outputs *1	OFF-delay time	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed					
4 PST-NO	---	1 (Semiconductor)	---	24 VDC	Screw terminals	G9SX-EX401-RT
					Spring-cage terminals	G9SX-EX401-RC
---	4 PST-NO		*2		Screw terminals	G9SX-EX041-T-RT
					Spring-cage terminals	G9SX-EX041-T-RC

[^0]*2. The OFF-delay time is synchronized to the OFF-delay time setting in the connected Advanced Unit (G9SX-AD- $\square / G 9 S X-A D A-\square$).

Accessories

Terminal Block

Appearance *	Specifications	Applicable units	Model	Remarks
	Terminal Block with screw terminals (3-pin)	G9SX-AD- \square G9SX-ADA- \square	Y9S-03T1B-02A	Two Terminal Blocks (black) with screw terminals, and a set of six code marks to prevent erroneous insertion.
	Terminal Block with screw terminals (4-pin)	G9SX-BC- G9SX-EX- \square	Y9S-04T1B-02A	Two Terminal Blocks (black) with screw terminals, and a set of six code marks to prevent erroneous insertion.

Note: The G9SX main unit comes with a terminal block as standard equipment. The accessories shown here can be ordered as a replacement.

* The illustrations show 3-pin types

Specifications

Ratings

Power input

Item \quad Model	G9SX-AD322- $\square /$ ADA222- \square	G9SX-BC202- \square		G9SX-EX- \square
Rated supply voltage	24 VDC			
Operating voltage range	-15% to 10\% of rated supply voltage			
Rated power consumption *	4 W max.	3 W max.	2 W max.	

* Power consumption of loads not included.

Inputs

Item	Model	G9SX-AD322- $\square /$ ADA222- \square	G9SX-BC202- \square
Safety input		20.4 VDC to 26.4 VDC, internal impedance: approx. $2.8 \mathrm{k} \Omega$ *	
Feedback/reset input			

* Provide a current equal to or higher than that of the minimum applicable load of the connected input control device.

Outputs

Item \quad Model	G9SX-AD322- $\square / A D A 222-\square$	G9SX-BC202- \square
Instantaneous safety output *1 OFF-delayed safety output *1	P channel MOS-FET output Load current: 0.8 A DC max./output *2 *3	P channel MOS-FET output Load current: $0.8 ~ A ~ D C ~ m a x . / o u t p u t ~ * 2 ~ * 3 ~$

*1. While safety outputs are in the ON state, the following signal sequence is output continuously for diagnosis. When using the safety outputs as input signals to control devices (i.e. Programmable Controllers), consider the OFF pulse shown below.

*2. The following derating is required when Units are mounted side-by-side.
G9SX-AD322- $\square /$ G9SX-ADA222- $\square /$ G9SX-BC202- \square : 0.4 A max. load current/output
*3. A load current below 1 A DC/output can be used when the following outputs are used.
G9SX-AD322- $\square / G 9 S X-A D A 222-\square: 2$ outputs or less
G9SX-BC202- \square : 1 output

Expansion Unit Ratings

Item \quad Model	G9SX-EX- \square
Rated load	250 VAC, 3 A/30 VDC, 3 A (resistive load)
Rated carry current	3 A
Maximum switching voltage	250 VAC, 125 VDC

Characteristics

Item	Model	G9SX-AD322- $\square /$ ADA222- \square	G9SX-BC202- \square	G9SX-EX- \square
Overvoltage category (IEC/EN 60664-1)		II		II (Safety relay outputs 13 to 43 and 14 to 44 : III)
Operating time (OFF to ON state)*1		```50 ms max. (Safety input: ON) *2 100 ms max. (Logical AND connection input: ON) *3```	$50 \mathrm{~ms} \mathrm{max}$. (Safety input: ON)	$30 \mathrm{~ms} \mathrm{max}$. * 4
Response time (ON to OFF state) *1		15 ms max .		10 ms max. *4
Accuracy of OFF-delay time *5		Within $\pm 5 \%$ of the set value	---	Within $\pm 5 \%$ of the set value
Input	Input current	10 mA min.		---
	ON voltage	11 V min.		---
	OFF voltage	5 V min.		---
	OFF current	1 mA max.		---
	Maximum wiring length	100 m max. (External connection impedance: 100Ω max. and 10 nF max.)		---
	Reset input time	100 ms min .		---
Output	ON-state residual voltage	3.0 V max. (safety output, auxiliary output)		
	OFF-state leakage current	0.1 mA max. (safety output, auxiliary output)		
Insulation resistance	Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together	$20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC)	---	---
	Between all terminals connected together and DIN track		$20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC)	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength	Between logical AND connection terminals, and power supply input terminals and other input and output terminals connected together	500 VAC for 1 min	---	---
	Between all terminals connected together and DIN track		500 VAC for 1 min	1,200 VAC for 1 min
	Between different poles of outputs	---	---	
	Between safety relay outputs connected together and other terminals connected together			2,200 VAC for 1 min
Vibration resistance		Frequency: 10 to 55 to $10 \mathrm{~Hz}, 0.375-\mathrm{mm}$ single amplitude (0.75-mm double amplitude)		
Shock resistance	Destruction	$300 \mathrm{~m} / \mathrm{s}^{2}$		
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$		
Durability	Electrical	---		100,000 cycles min. (rated load, switching frequency: 1,800 cycles/hour)
	Mechanical	---		5,000,000 cycles min. (switching frequency: 7,200 cycles/hour)
Ambient operating temperature		-10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation)		
Ambient operating humidity		25\% to 85\%		
Terminal tightening torque *6		$0.5 \mathrm{~N} \cdot \mathrm{~m}$		
Weight		Approx. 200 g	Approx. 125 g	Approx. 165 g

*1. When two or more Units are connected by logical AND, the operating time and response time are the sum total of the operating times and response times, respectively, of all the Units connected by logical AND.
*2. Represents the operating time when the safety input turns ON with all other conditions set.
*3. Represents the operating time when the logical AND input turns ON with all other conditions set
*4. This does not include the operating time or response time of Advanced Units that are connected.
*5. This does not include the operating time or response time of internal relays in the G9SX-EX- \square.
*6. For the G9SX- \square-RT (with screw terminals) only.

Logical AND Connection

Model	G9SX-AD322- $\square / A D A 222-\square$	G9SX-BC202- \square	
Number of Units connected per logical AND output	4 Units max.	G9SX-EX- \square	
Total number of Units connected by logical AND *1	20 Units max.	---	
Number of Units connected in series by logical AND	5 Units max.	---	
Max. number of Expansion Units connected *2	---	---	
Maximum cable length for logical AND input	100 m max./output	5 Units max.	

Note: See Logical AND Connection Combinations below for details.
*1. The number of G9SX-EX401- \square Expansion Units or G9SX-EX041-T- \square Expansion Units (OFF-delayed Model) not included.
*2. G9SX-EX401- \square Expansion Units and G9SX-EX041-T- \square Expansion Units (OFF-delayed Model) can be mixed.

Logical AND Connection Combinations

1. One logical AND connection output from an Advanced Unit G9SX-AD can be logical AND connected to up to four Advanced Units.

2. Two logical AND outputs from a Basic Unit G9SX-BC can be logical AND connected to up to eight Advanced Units.

3. Two logical AND outputs from an Advanced Unit G9SX-ADA can be logical AND connected to up to eight Advanced Units.

4. Any Advanced Unit with logical AND input can be logical AND connected to Advanced Units on up to five tiers.

5. Two logical AND connection outputs, each from different Advanced/Basic Units, can be logical AND connected to a single G9SX-ADA Unit.

6. The largest possible system configuration contains a total of 20 Advanced and Basic Units. In this configuration, each Advanced Unit can have up to five Expansion Units.

Response Time and Operating Time

The following table shows the response time for two or more Units that are logical AND connected.

*1. The maximum response time (not including Expansion Units) in this block flow diagram is the time it takes the output from the Unit on the lowest tier to switch from ON to OFF after the input to the Unit on the highest tier switches from ON to OFF
*2. The maximum response time (including Expansion Units) in this block flow diagram is the time it takes the output from the Expansion Unit connected to the Unit on the lowest tier to switch from ON to OFF after the input to the Unit on the highest tier switches from ON to OFF.
*3. The maximum operating time (not including Expansion Units) in this block flow diagram is the time it takes the output from the Unit on the lowest tier to switch from OFF to ON after the input to the Unit on the highest tier switches from OFF to ON.
*4. The maximum operating time (including Expansion Units) in this block flow diagram is the time it takes the output from the Expansion Unit connected to the Unit on the lowest tier to switch from OFF to ON after the input to the Unit on the highest tier switches from OFF to ON.

Connections

Internal Connection

G9SX-AD322- \square (Advanced Unit)

*1. Internal power supply circuit is not isolated.
*2. Logical AND input is isolated.
*3. Outputs S14 to S54 are internally redundant.
G9SX-BC202- \square (Basic Unit)

*1. Internal power supply circuit is not isolated.
*2. Outputs S14 and S24 are internally redundant.

G9SX-ADA222- \square (Advanced Unit)

*1. Internal power supply circuit is not isolated.
*2. Logical AND inputs are isolated.
*3. Outputs S14 to S54 are internally redundant.

G9SX-EX401- $\square /$ G9SX-EX041-T- \square (Expansion Unit / Expansion Unit OFF-delayed model)

*1. Internal power supply circuit is not isolated.
*2. Relay outputs are isolated.

Wiring of Inputs and Outputs

Signal name	Terminal name	Description of operation	Wiring	
Power supply input	A1, A2	The input terminals for power supply. Connect the power source to the A1 and A2 terminals.	Connect the power supply plus (24 VDC) to the A1 terminal. Connect the power supply minus (GND) to the A2 terminal.	
Safety input 1	T11, T12	To set the safety outputs in the ON state, the ON state signals must be input to both safety input 1 and safety input 2. Otherwise the safety outputs cannot be in the ON state.	Using 1 safety input channel	
Safety input 2	T21, T22		Using 2 safety input channels (cross fault detection OFF)	
			Using 2 safety input channels (cross fault detection ON)	
Feedback/reset input	T31, T32, T33	To set the safety outputs in the ON state, the ON state signal must be input to T33. Otherwise the safety outputs cannot be in the ON state.	Auto reset	
		To set the safety outputs in the ON state, the signal input to T32 must change from the OFF state to the ON state, and then to the OFF state. Otherwise the safety outputs cannot be in the ON state.	Manual reset	
Logical AND connection input	T41, T42, T51, T52	A logical AND connection means that one unit (Unit A) outputs a safety signal "a" to a subsequent unit (Unit B) and Unit B calculates the logical multiplication (AND) (i.e., outputs the AND) of the signal "a" and safety signal "b", which is input to Unit B. Thereby the logic of the safety output of Unit B is "a" AND "b". (An AND of inputs "a" and "b" is output.) To set the safety outputs of the subsequent Unit in the ON state, its logical AND connection preset switch must be set to AND (enable) and the HIGH state signal must be input to T41 of the subsequent unit.		
Cross fault detection input	Y1	Selects the mode for the failure detecting (cross fault detecting) function for the safety inputs of G9SX corresponding to the connection of the cross fault detection input.	Y1 connection varies depending on whether T11 and T21 are used or not. Refer to wiring of the safety input 1 and 2.	
Instantaneous safety output	S14, S24, S34	Turns ON/OFF according to the state of the safety inputs, feedback/reset inputs, and logical AND connection inputs. During OFF-delay state, the Instantaneous safety outputs are not able to turn ON.	Keep these outputs open when not used.	
OFF-delayed safety output	S44, S54	OFF-delayed safety outputs. The OFF-delay time is set by the OFF-delay preset switch. When the delay time is set to zero, these outputs can be used as instantaneous safety outputs.	Keep these outputs open when not used.	
Logical AND connection output	L1, L2	Outputs a signal of the same logic as the instantaneous safety outputs.	Keep these outputs open when not used.	
Auxiliary monitor output	X1	Outputs a signal of the same logic as the instantaneous safety outputs	Keep these outputs open when not used.	
Auxiliary error output	X2	Outputs when the error indicator is lit or blinking.	Keep these outputs open when not used.	

Connecting Safety Sensors and the G9SX

1. When connecting safety sensors to the G9SX, the Y1 terminal must be connected to 24 VDC.

The G9SX will detect a connection error, if the Y1 terminal is open.
2. In many cases, safety sensor outputs include an OFF-shot pulse for self diagnosis. The following condition of test pulse is applicable as safety inputs for the G9SX.

- OFF-shot pulse width of the sensor, during the ON-state: $500 \mu \mathrm{~s}$ max.

Operation

Functions

Logical AND Connection

- Example with G9SX-AD322- \square

The logical AND connection means that the Basic Unit (or Advanced Unit) outputs a safety signal "a" to an Advanced Unit, and the Advanced Unit calculates the logical multiplication (AND) of the safety signal "a" and safety signal "b." The safety output of an Advanced Unit with the logical AND connection shown in the following diagram is "a" AND "b".

This is illustrated using the application in the following diagram as an example. The equipment here has two hazards identified as Robot 1 and Robot 2, and it is equipped with a safety door switch and an emergency stop switch. You may have overall control where both Robot 1 and Robot 2 are stopped every time the emergency stop switch is pressed. You may also have partial control where only Robot 1, which is closest to the door, is stopped when the door is opened. In that case, Robot 2 will continue to operate. The actual situation using a G9SX for this application is shown in this example.
(Note: The logical AND setting on the Advanced Unit must be set to AND (enabled).)

Example with G9SX-ADA222- \square

The Advanced Unit G9SX-ADA222- \square is equipped with two logical AND connection inputs. Therefore, it is capable of receiving two safety signals, each from different Advanced or Basic Units. As shown in the diagram below, the output of Advanced Unit G9SX-ADA222- \square will be "a" AND "b" AND "c".

Connecting Expansion Units

- The G9SX-EX and G9SX-EX-T Expansion Units can be connected to an Advanced Unit (G9SX-AD322- $\square /$ G9SX-ADA222- \square) to increase the number of safety outputs. (They cannot be connected to a Basic Unit.)
- A maximum of five Expansion Units can be connected to one Advanced Unit. This may be a combination of G9SX-EX Instantaneous types and G9SX-EX-T OFF-delayed types.
- Remove the terminating connector from the receptacle on the Advanced Unit and insert the Expansion Unit cable connector into the receptacle. Insert the terminating connector into the receptacle on the Expansion Unit at the very end (rightmost).
- When Expansion Units are connected to an Advanced Unit, make sure that power is supplied to every Expansion Unit. (Refer to the following diagram for actual Expansion Unit connection.)

Setting Procedure

1.Cross Fault Detection (Advanced Unit/Basic Unit)

Set the cross fault detection mode for safety inputs by shorting Y1 to 24 V or leaving it open. When cross fault detection is set to ON, short-circuit failures are detected between safety inputs T11-T12 and T21-22. When a cross fault is detected, the following will occur.

1. The safety outputs and logical AND outputs lock out.
2. The LED error indicator is lit.
3. The error output (auxiliary output) turns ON.

Cross fault detection		Wiring
OFF	Using 1 safety input channel	
	Using 2 safety input channels	
ON		

2.Reset Mode (Advanced Unit/Basic Unit)

Set the reset mode using feedback/reset input terminals T31, T32, and T33.
Auto reset mode is selected when terminal T32 is shorted to 24 V and manual reset mode is selected when terminal T33 is shorted to 24 V .

3.Setting Logical AND Connection (Advanced Unit) When connecting two or more Advanced Units (or Basic Units) by logical AND connection, set the logical AND connection preset switch on the Advanced Unit that is on the input side (Advanced Unit G9SX-AD322 in the following diagram) to AND.
The default setting of the logical AND connection preset switch is set to OFF.
(1) Using G9SX-AD322 on the Input Side

Note: 1. A setting error will occur and Advanced Unit G9SX-AD322 will lock out if the logical AND setting switch on the Unit is set to OFF.
2. Set the logical AND setting switch on Advanced Unit A to OFF or an error will occur.
3. A logical AND input cannot be sent to a Basic Unit.

(2) Using G9SX-ADA222 on the Input Side

Note: 1. When not connecting Advanced Unit B, leave terminals T41 and T42 of the G9SX-ADA222 Advanced Unit open, and set the logical AND setting switch T41/T42 to OFF.
2. When not connecting Advanced Unit C, leave terminals T51 and T52 of the G9SX-ADA222 Advanced Unit open, and set the logical AND setting switch T51/T52 to OFF.
The following table shows the relationship between the logical ON
setting switches and the conditions for safety outputs turning ON.

Logical AND connection preset switch		Conditions for safety outputs turning		
ON				

4.Setting the OFF-delay Time (Advanced Unit)

The OFF-delay preset time on an Advanced Unit is set from the OFFdelay time preset switch (1 each on the front and back of the Unit). Normal operation will only occur if both switches are identically set. An error will occur if the switches are not identically set.
The default setting of the OFF-delay time preset switch is set to 0 s .

Back

Refer to the following illustration for details on setting switch positions.
G9SX-AD322-T15/G9SX-ADA222-T15

G9SX-AD322-T150/G9SX-ADA222-T150

LED Indicators

Marking	Color	Name	G9SX-AD	G9SX-ADA	G9SX-BC	G9SX-EX	G9SX-EX-T	Function
PWR	Green	Power supply indicator	O	Reference				

* Refer to Fault Detection on the next page for details.

Settings Indication (at Power ON)

Settings for the G9SX can be checked by the orange indicators for approx. 3 seconds after the power is turned ON. During this settings indication period, the ERR indicator will light, however the auxiliary error output will remain OFF

Indicator	Item	Setting position		Indicator status	Setting mode

Fault Detection

When the G9SX detects a fault, the ERR indicator and/or other indicators light up or blink to inform the user about the fault.
Check and take necessary measures referring to the following table, and then re-supply power to the G9SX.
(Advanced Unit/Basic Unit)

ERR indicator	Other indicator	Fault	Expected causes of the fault	Check points and measures to take

When indicators other than the ERR indicator blink, check and take necessary actions referring to the following table.

ERR indicator	Otherindicators		Fault	Expected cause of the fault	Check points and measures to take
Off	T1 T2	$\begin{gathered} \text { Cón } \\ \text { Blink } \end{gathered}$	Mismatch between input 1 and input 2.	The input status between input 1 and input 2 is different, due to contact failure or a short circuit of safety input device(s) or a wiring fault.	Check the wiring from safety input devices to the G9SX. Or check the input sequence of safety input devices. After removing the fault, turn both safety inputs to the OFF state.

(Expansion Unit)

ERR indicator	Other indicators	Fault	Expected cause of the faults	Check points and measures to take
Lights	---	Fault involved with safety relay outputs of Expansion Units	1)Welding of relay contacts 2)Failure of the internal circuit	Replace with a new product.

Advanced Unit

G9SX-AD322- \square

Note: 1. Above outline drawing is for -RC terminal type.
2. For -RC terminal type only.

Advanced Unit

G9SX-ADA222- \square

Note: 1. Above outline drawing is for -RC terminal type. 2. For -RC terminal type only.

* Typical dimension Note: 1. Above outline drawing is for -RC terminal type.

Basic Unit

Terminal arrangement

Terminal arrangement
(3) (1) (5) 30
(11) (1) ($(1)(\mathbb{1})(\sqrt{2})(4)$

PWRT [FB
T1 Пт
and1 \and2
EIT]ED]err
(21) (2) $1(4)(12)$
(511) (22)(49)(59)(1ㄴ) (2)

Expansion Unit

G9SX-EX401- \square
Expansion Unit (OFF-delayed Model)

Typical dimension
Note: 1. Above outline drawing is for -RC terminal type.
2. For -RC terminal type only.

Application Examples

Highest achievable PL/ safety category	Model	Stop category	Reset
PLe/4 equivalent	Emergency Stop Switch A165E/A22 Flexible Safety Unit G9SX-BC202 Safety Limit Switch D4B-N/D4N/D4F Flexible Safety Unit G9SX-AD322-T15	M1, M2: 0	Emergency Stop: Manual
Guard: Manual			

Note: The above PL is only the evaluation result of the example. The PL must be evaluated in an actual application by the customer after confirming the usage conditions.

- Application Overview 1

1. When the emergency stop switch S 1 is pressed.

- The power supply to the motor M1 and M2 is turned OFF immediately when the emergency stop switch S1 is pressed.
- The power supply to the motor M1 is kept OFF until the emergency stop switch S1 is released and the reset switch S2 is pressed.
- The power supply to the motor M2 is kept OFF until the guard is closed and the reset switch S2 and S5 are pressed while the emergency stop switch S1 is released.

2. When the guard is opened (the emergency stop switch S 1 is released).

- The power supply to the motor M2 is turned OFF immediately when the S 3 and S 4 detect that the guard is opened. (The power supply to the motor M1 is kept ON.)
- The power supply to the motor M2 is kept OFF until the guard is closed and the reset switch S 5 is pressed.

S1:	Emergency Stop Switch
S2, S5:	Reset Switch
S3:	Safety Limit Switch
S4:	Limit Switch
KM1 to KM6:	Magnetic contactor
M1 to M2:	Motor

Timing chart 1

(1) Guard opened: Only the Unit 2 stops.
(2) Emergency stop switch pressed: Both the Unit 1 and 2 stop.

Note: In this example, press reset switch S2, confirm that Unit 1 has started operating, and then press reset switch S5.

Highest achievable PL/ safety category	Model	Stop category	Reset
	Emergency Stop Switch A165E/A22E Flexible Safety Unit G9SX-BC202 Safety Limit Switch D4B-N/D4N/D4F Safety Light Curtain F3SG Flexible Safety Unit G9SX-AD322-T15 Flexible Safety Unit G9SX-ADA222-T150	M1 to M4: 0	Emergency Stop: Manual Guard 1, 2: Auto Safety Light Curtain: Auto

Note: The above PL is only the evaluation result of the example. The PL must be evaluated in an actual application by the customer after confirming the usage conditions.

- Application Overview 2

1. When the emergency stop switch $S 1$ is pressed.

- The power supply to the motor M1 to M4 is turned OFF immediately when the emergency stop switch S1 is pressed.
- The power supply to the motor M1 is kept OFF until the reset switch S2 is pressed while the emergency stop switch S1 is released.
- The power supply to the motor M2 is kept OFF until the reset switch S 2 is pressed while the guard 1 is closed and the emergency stop switch S 1 is released.
- The power supply to the motor M3 is kept OFF until the reset switch S2 is pressed while the guard 1 is closed and the emergency stop switch S 1 is released.
- The power supply to the motor M4 is kept OFF until the reset switch S 2 is pressed while the guard 1 and 2 are closed and the safety light curtain is unblocked and the emergency stop switch S1 is released

2. When the guard 1 is opened (the emergency stop switch S 1 is released).

- The power supply to the motor M2 and M4 is turned OFF immediately when the S3 and S4 detect that the guard 1 is opened.
- The power supply to the motor M2 is kept OFF until the guard 1 is closed.
- The power supply to the motor M4 is kept OFF until the guard 1 and 2 are closed and the safety light curtain is unblocked.

3. When the guard 2 is opened (the emergency stop switch S 1 is released).

- The power supply to the motor M3 and M4 is turned OFF immediately when the S5 and S6 detect that the guard 2 is opened.
- The power supply to the motor M3 is kept OFF until the guard 2 is closed.
- The power supply to the motor M4 is kept OFF until the guard 1 and 2 are closed and the safety light curtain is unblocked.

4. When the safety light curtain is blocked (the emergency stop switch S 1 is released).

- The power supply to the motor M4 is turned OFF immediately when the safety light curtain is blocked.
- The power supply to the motor M4 is kept OFF until the guard 1 and 2 are closed and the safety light curtain is unblocked.

Note: Use safety light curtains with PNP control outputs.

Timing chart 2

(1) Guard 1 opened: Unit 2 and Unit 4 stop.
(2) Guard 3 opened: Unit 4 stops.
(3) Emergency stop switch pressed: All units stop.

A Safety Measure for Hazardous Operations That Does Not Lower Productivity

- Two functions support two types of application:
- Auto switching: For applications where operators work together with machines
- Manual switching: For applications with limited operations
- External indicator outputs enable indicating the switching status of two safety input devices.
- Auxiliary outputs enable monitoring of safety inputs, safety outputs, and errors.
- Detailed LED indications enable easy diagnosis.
- Logical AND connection allows complicated applications in combination with other G9SX-series Units.
- Certification for compliance with IEC/EN 61508 (SIL3), IEC/EN 62061 (SIL3) and EN ISO13849-1 (PLe/Safety Category 4).

Be sure to read the "Safety Precautions" on page 45.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.

Application Examples

	Working condition	External indicator	G9SX-GS			
			Safety input	Safety output	Monitor output	External indicator
			Safety input A ON Safety input B ON	ON Safety output		
	2		Safety input A ON Safety input B OFF	ON Safety output		
			Safety input A OFF Safety input B ON			
			Safety input A OFF Safety input B OFF			

Model Number Structure

Model Number Legend
Note: Please see "Ordering Information" below for the actual models that can be ordered.

G9SX- $\frac{\square \square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{\square \square \square-}{5} \frac{\square \square}{6}$

1. Functions

GS: Safety Guard Switching Unit
EX: Expansion Unit
2. Output Configuration (Instantaneous Safety Outputs) 0: None
2: 2 outputs
4: 4 outputs
3. Output Configuration (OFF-delayed Safety Outputs) 0: None
2: 2 outputs
4: 4 outputs
4. Output Configuration (Auxiliary Outputs)

1: 1 output
6: 6 outputs
5. Max. OFF-delay Time

Safety Guard Switching Unit T15: 15 s
Expansion Unit
No indicator: No OFF delay
T: OFF delay
6. Terminal Block Type

RT: Screw terminals
RC: Spring-cage terminals

Ordering Information

List of Models

Safety Guard Switching Unit

Safety outputs *3		Auxiliary outputs *4	Logical AND connection		Max. OFF-delay time *1	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed *2		Inputs	Outputs				
$\begin{aligned} & 2 \\ & \text { (semiconductor) } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { (semiconductor) } \end{aligned}$	$\begin{aligned} & 6 \\ & \text { (semiconductor) } \end{aligned}$	(semiconductor)	1 (semiconductor)	15 s	24 VDC	Screw terminals	G9SX-GS226-T15-RT
							Spring-cage terminals	G9SX-GS226-T15-RC

*1. The OFF-delay time can be set in 16 steps as follows:
T15: $0,0.2,0.3,0.4,0.5,0.6,0.7,1,1.5,2,3,4,5,7,10$, or 15 s
*2. The OFF-delayed output becomes an instantaneous output by setting the OFF-delay time to 0 s .
*3. P channel MOS-FET output
*4. PNP transistor output (except for the external indicator outputs, which are P channel MOS-FET outputs)

Expansion Unit

Safety outputs		Auxiliary outputs *1	OFF-delay time	Rated voltage	Terminal block type	Model
Instantaneous	OFF-delayed					
4 PST-NO (contact)	---	1 (semiconductor)	---	24 VDC	Screw terminals	G9SX-EX401-RT
					Spring-cage terminals	G9SX-EX401-RC
	4 PST-NO (contact)		*2		Screw terminals	G9SX-EX041-T-RT
---					Spring-cage terminals	G9SX-EX041-T-RC

*1. PNP transistor output
*2. The OFF-delay time is synchronized to the OFF-delay time setting in the connected Unit (G9SX-GS226-T15- \square).

Accessories

Terminal Block

Appearance*	Specifications	Applicable units	Model	Remarks

[^1]
Specifications

Ratings

Power Input

Item \quad Model	G9SX-GS226-T15- \square	G9SX-EX- \square
Rated supply voltage	24 VDC	
Operating voltage range	-15% to 10% of rated supply voltage	
Rated power consumption *	5 W max.	2 W max.

* Power consumption of loads not included.

Inputs

Item	Model
Safety inputs	G9SX-GS226-T15- \square
Mode selector input	
Feedback/reset input	Approx. $2.8 \mathrm{k} \Omega^{*}$

* Provide a current equal to or higher than that of the minimum applicable load of the connected input control device.

Outputs

\quad Model	G9SX-GS226-T15- \square
Instantaneous safety outputs *1	P channel MOS-FET outputs Load current: 0.8 A DC max./output *2
OFF-delayed safety outputs *1	PNP transistor outputs Load current: 0.8 A DC max./output *2
Auxiliary outputs (for input, output, and error monitoring)	P channel MOS-FET outputs Connectable indicators
External indicator outputs	- Incandescent lamp: 24 VDC, 3 to 7 W - LED lamp: 10 to 300 mA DC/output

*1. While safety outputs are in the ON state, the following signal sequence is output continuously for diagnosis.
When using the safety outputs as input signals to control devices (i.e. Programmable Controllers), consider the OFF pulse shown below.

*2. The following derating is required when Units are mounted side-by-side.
G9SX-GS226-T15- \square : 0.4 A max. load current/output

Expansion Unit

Item \quad Model	G9SX-EX- \square
Rated load	250 VAC, 3 A / 30 VDC, 3 A (resistive load)
Rated carry current	3 A
Maximum switching voltage	250 VAC, 125 VDC

[^0]: *1. PNP transistor output

[^1]: Note: The G9SX main unit comes with a terminal block as standard equipment. The accessories shown here can be ordered as a replacement.

 * The illustrations show 3-pin types

