

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

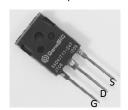
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Normally – OFF Silicon Carbide Super Junction Transistor


 V_{DS} = 1700 V $V_{DS(ON)}$ = 2.0 V I_{D} = 4 A $R_{DS(ON)}$ = 500 m Ω

Features

- 175 °C maximum operating temperature
- Temperature independent switching performance
- Gate oxide free SiC switch
- Suitable for connecting an anti-parallel diode
- · Positive temperature coefficient for easy paralleling
- · Low gate charge
- · Low intrinsic capacitance

Package

• RoHS Compliant

TO-247AB

Advantages

- · Low switching losses
- · Higher efficiency
- High temperature operation
- · High short circuit withstand capability

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

Maximum Ratings unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Drain – Source Voltage	V_{DS}	V _{GS} = 0 V	1700	V
Continuous Drain Current	I _D	T _{C,MAX} = 95 °C	4	Α
Gate Peak Current	I _{GM}		5	Α
Reverse Gate – Source Voltage	V_{SG}		60	V
Reverse Drain – Source Voltage	$V_{\mathtt{SD}}$		50	V
Power Dissipation	P _{tot}	T _C = 25 °C	91	W
Storage Temperature	T _{stg}		-55 to 175	°C

Electrical Characteristics at T_i = 175 °C, unless otherwise specified

Dovemeter	Cymphal	O a maditi a ma	Values			11:4
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
On Characteristics						
		$I_D = 4 \text{ A}, I_G = 250 \text{ mA}, T_j = 25 \text{ °C}$		2.0		
Drain – Source On Voltage	$V_{DS(ON)}$	$I_D = 4 \text{ A}, I_G = 500 \text{ mA}, T_j = 125 °C$		3.3		V
_		$I_D = 4 \text{ A}, I_G = 500 \text{ mA}, T_j = 175 °C$		4.5		
		$I_D = 4 \text{ A}, I_G = 250 \text{ mA}, T_j = 25 ^{\circ}\text{C}$		500		
Drain – Source On Resistance	$R_{DS(ON)}$	$I_D = 4 \text{ A}, I_G = 500 \text{ mA}, T_j = 125 °C$		800		$m\Omega$
		$I_D = 4 \text{ A}, I_G = 500 \text{ mA}, T_j = 175 °C$		1100		
Cata Farward Voltage	$V_{GS(FWD)}$	$I_G = 500 \text{ mA}, T_j = 25 \text{ °C}$		3.3		V
Gate Forward Voltage		$I_G = 500 \text{ mA}, T_j = 175 ^{\circ}\text{C}$		3.2		V
DC Current Gain	β	$V_{DS} = 5 \text{ V}, I_{D} = 4 \text{ A}, T_{j} = 25 \text{ °C}$		60		
	р	$V_{DS} = 5 \text{ V}, I_{D} = 4 \text{ A}, T_{j} = 175 ^{\circ}\text{C}$		35		
Off Characteristics						
		V _R = 1700 V, V _{GS} = 0 V, T _i = 25 °C		0.5		
Drain Leakage Current	I _{DSS}	$V_R = 1700 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 125 \text{ °C}$		1.0		μA
		$V_R = 1700 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 175 ^{\circ}\text{C}$		2.0		

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	0	Values			1114
		Conditions	min.	typ.	max.	Unit
Switching Characteristics						
Turn On Delay Time	$t_{d(on)}$			35		ns
Rise Time	t _r	$V_{DD} = 1100 \text{ V}, I_D = 4 \text{ A},$		28		ns
Turn Off Delay Time	$t_{d(off)}$	$R_{G(on)} = R_{G(off)} = 44 \Omega,$ $V_{GS} = -8/15 \text{ V, L} = 1.1 \text{ mH,}$		60		ns
Fall Time	t _f	FWD = GB05SLT12.		50		ns
Turn-On Energy Per Pulse	Eon	T _j = 25 °C		323		μJ
Turn-Off Energy Per Pulse	E_{off}	Refer to Figure 11 for gate current		60		μJ
Total Switching Energy	E_{ts}	waveform		383		μJ
Turn On Delay Time	t _{d(on)}			30		ns
Rise Time	t _r	$V_{DD} = 1100 \text{ V}, I_D = 4 \text{ A},$ $R_{G(on)} = R_{G(off)} = 44 \Omega,$ $V_{GS} = -8/15 \text{ V}, L = 1.1 \text{ mH},$		14		ns
Turn Off Delay Time	$t_{d(off)}$			73		ns
Fall Time	t _f	FWD = GB05SLT12.		58		ns
Turn-On Energy Per Pulse	E _{on}	T _j = 175 °C Refer to Figure 11 for gate current		172		μJ
Turn-Off Energy Per Pulse	E _{off}			73		μJ
Total Switching Energy	E _{ts}	waveform		245		μJ
Thermal Characteristics						
Thermal resistance, junction - case	R_{thJC}			1.64		°C/W

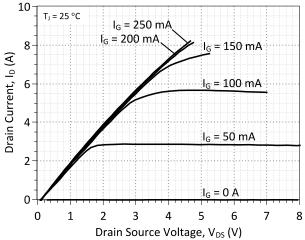


Figure 1: Typical Output Characteristics at 25 °C

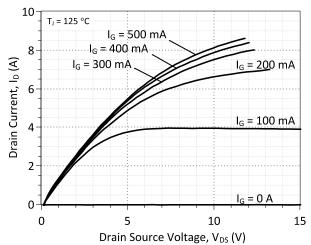


Figure 2: Typical Output Characteristics at 125 °C

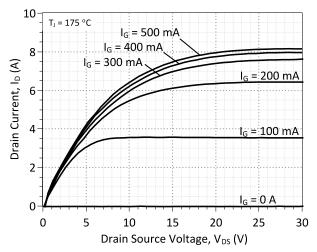


Figure 3: Typical Output Characteristics at 175 °C

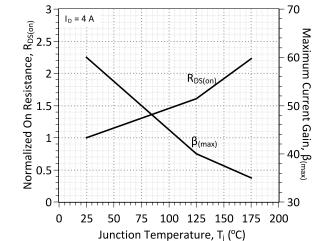


Figure 5: Normalized On-Resistance and Current Gain vs. Temperature

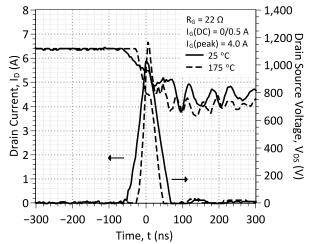


Figure 7: Typical Hard-switched Turn On Waveforms

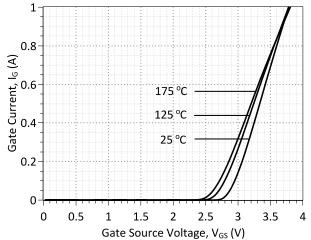


Figure 4: Typical Gate Source I-V Characteristics vs. Temperature

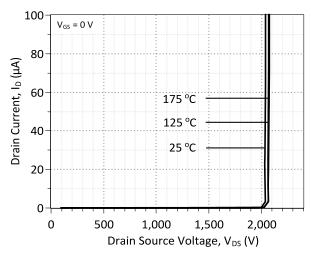


Figure 6: Typical Blocking Characteristics

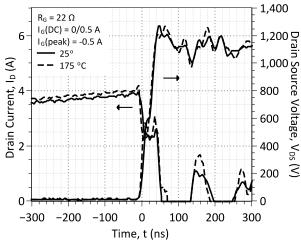


Figure 8: Typical Hard-switched Turn Off Waveforms

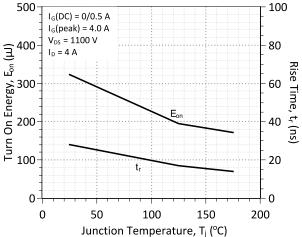


Figure 9: Typical Turn On Energy Losses and Switching Times vs. Temperature

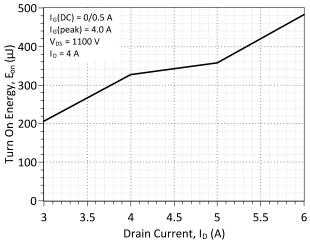


Figure 11: Typical Turn On Energy Losses vs. Drain Current

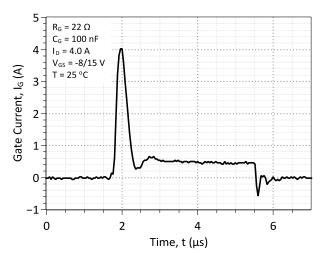


Figure 13: Typical Gate Current Waveform

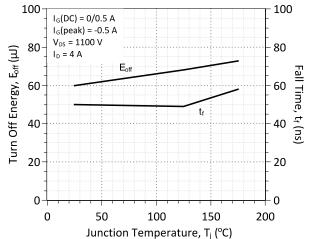


Figure 10: Typical Turn Off Energy Losses and Switching Times vs. Temperature

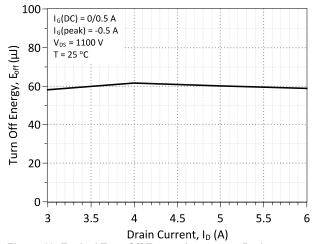


Figure 12: Typical Turn Off Energy Losses vs. Drain Current

Gate Drive Technique (Option #1)

To drive the GA04JT17-247 with the lowest gate drive losses, a custom-designed, dual voltage source gate drive configuration is recommended [for example, see Figure 5(a) in J. Rabkowski et al. IEEE Trans. Power Electronics 27(5), 2633-2642 (2012)]. More details on using this optimized gate drive technique will be made available shortly. An effective simple alternative for ultra-fast switching of the GA04JT17-247 is available below.

Gate Drive Technique (Option #2)

The GA04JT17-247 can be effectively driven using the IXYS IXDN614 / IXDD614 non-inverting gate driver IC or a comparable product. A typical gate driver configuration along with component values using this driver is offered below. Additional information is available from the manufacturer at www.ixys.com.

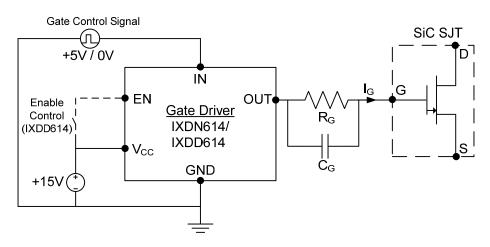
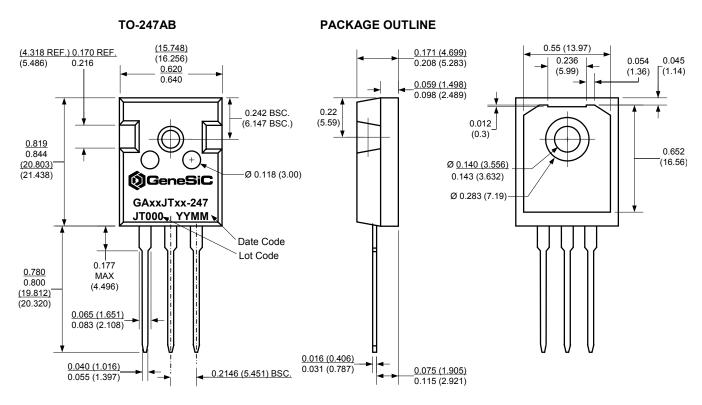



Figure 14: Recommended Gate Diver Configuration (Option #2)

Parameter	Symbol	Conditions	Values			1114
			min.	typ.	max.	Unit
Gate Driver Pins (IXDD614/IXDN614)						
Supply Voltage	Vcc		-0.3	15	40	V
Gate Control Input Signal, Low	IN		-5.0	0	0.8	V
Gate Control Input Signal, High	IN		3.0	5.0	V _{CC} +0.3	V
Enable, Low	EN	IXDD614 Only			1/3*V _{cc}	V
Enable, High	EN	IXDD614 Only	2/3*V _{CC}			V
Output Voltage, Low	V_{OUT}				0.025	V
Output Voltage, High	V_{OUT}		V _{CC} -0.025			V
Output Current, Peak	l _{out}	Package Limited		4.5	14	Α
Output Current, Continuous	I _{OUT}			0.5	4.0	Α
Passive Gate Components						
Gate Resistance	R_G	I _G ≈ 0.5 A	5	22		Ω
Gate Capacitance	C _G	I _G ≈ 0.5 A		100		nF

Package Dimensions:

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date Revision		Comments	Supersedes		
2013/02/21	2013/02/21 1 Revised electrical characteristics				
2012/12/03	2012/12/03 0				

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.