imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

=

=

=

1700 V

250 mΩ

2.0 V

8 A

 V_{DS}

ID

V_{DS(ON)}

R_{DS(ON)}

Normally – OFF Silicon Carbide Super Junction Transistor

Features

- 175 °C maximum operating temperature
- Temperature independent switching performance
- Gate oxide free SiC switch
- Suitable for connecting an anti-parallel diode
- · Positive temperature coefficient for easy paralleling
- Low gate charge
- · Low intrinsic capacitance

Package

RoHS Compliant

TO-247AB

Advantages

- Low switching losses
- Higher efficiency
- High temperature operation
- · High short circuit withstand capability

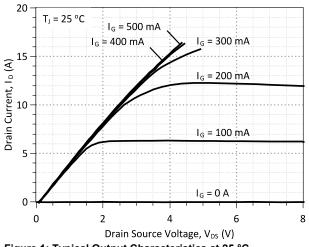
Applications

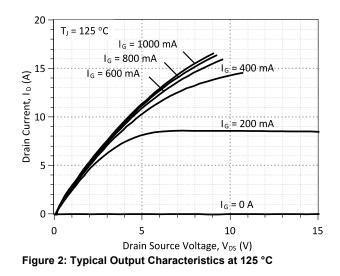
- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

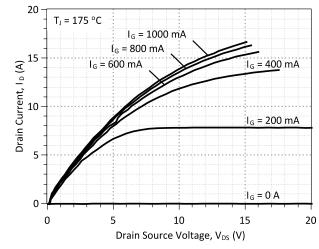
Maximum Ratings unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Drain – Source Voltage	V _{DS}	$V_{GS} = 0 V$	1700	V
Continuous Drain Current	ID	T _{C,MAX} = 90 °C	8	А
Gate Peak Current	I _{GM}		5	А
Reverse Gate – Source Voltage	V _{SG}		60	V
Reverse Drain – Source Voltage	V _{SD}		50	V
Power Dissipation	P _{tot}	T _C = 25 °C	16	W
Storage Temperature	T _{stg}		-55 to 175	°C

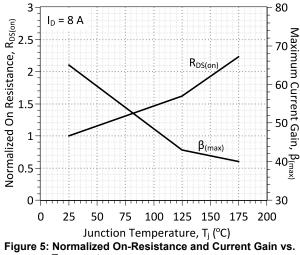
Electrical Characteristics at T_i = 175 °C, unless otherwise specified

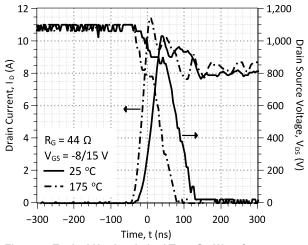

Beremeter	Symphol	Conditions -	Values		11	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
On Characteristics						
		I _D = 8 A, I _G = 500 mA, T _j = 25 °C		2.0		
Drain – Source On Voltage	V _{DS(ON)}	I _D = 8 A, I _G = 1000 mA, T _j = 125 °C		3.3		V
-		I _D = 8 A, I _G = 1000 mA, T _j = 175 °C		4.5		
		I _D = 8 A, I _G = 500 mA, T _j = 25 °C		250		
Drain – Source On Resistance	R _{DS(ON)}	I _D = 8 A, I _G = 1000 mA, T _j = 125 °C		400		mΩ
		I _D = 8 A, I _G = 1000 mA, T _j = 175 °C		550		
	$V_{GS(FWD)}$	I _G = 500 mA, T _j = 25 °C		3.0		V
Gate Forward Voltage		I _G = 500 mA, T _j = 175 °C		2.8		v
DC Current Gain	P	V _{DS} = 5 V, I _D = 8 A, T _i = 25 °C		65		
	β	V _{DS} = 5 V, I _D = 8 A, T _j = 175 °C		40		
Off Characteristics						
		V _R = 1700 V, V _{GS} = 0 V, T _i = 25 °C		0.1		
Drain Leakage Current	IDSS	V _R = 1700 V, V _{GS} = 0 V, T _j = 125 °C		0.5		μA
		V _R = 1700 V, V _{GS} = 0 V, T _i = 175 °C		2.0		


Electrical Characteristics at T_j = 175 °C, unless otherwise specified

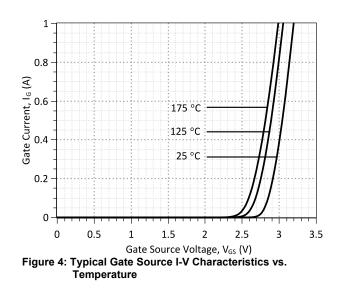

Parameter	Symbol	Symbol Conditions		Values		Unit	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit	
Switching Characteristics							
Turn On Delay Time	t _{d(on)}			35		ns	
Rise Time	t _r	$V_{DD} = 1100 \text{ V}, \text{ I}_{D} = 8 \text{ A},$		37		ns	
Turn Off Delay Time	$t_{d(off)}$	$R_{G(on)} = R_{G(off)} = 44 \Omega,$ V _{GS} = -8/15 V, L = 1.1 mH,		45		ns	
Fall Time	t _f	FWD = GB05SLT12.		38		ns	
Turn-On Energy Per Pulse	Eon	T _j = 25 °C		678		μJ	
Turn-Off Energy Per Pulse	E _{off}	Refer to Figure 11 for gate current		24		μJ	
Total Switching Energy	E _{ts}	waveform		702		μJ	
Turn On Delay Time	t _{d(on)}	$\label{eq:VDD} \begin{array}{l} V_{DD} = 1100 \ V, \ I_D = 8 \ A, \\ R_{G(on)} = R_{G(off)} = 44 \ \Omega, \\ V_{GS} = -8/15 \ V, \ L = 1.1 \ mH, \\ FWD = GB05SLT12, \\ T_j = 175 \ ^{\circ}C \\ Refer to \ Figure \ 11 \ for \ gate \ current \\ waveform \end{array}$		28			
Rise Time	tr			25		ns	
Turn Off Delay Time	t _{d(off)}			44		ns	
Fall Time	t _f			33		ns	
Turn-On Energy Per Pulse	Eon			495		μJ	
Turn-Off Energy Per Pulse	E _{off}			26		μJ	
Total Switching Energy	E _{ts}	wavelolili		521		μJ	

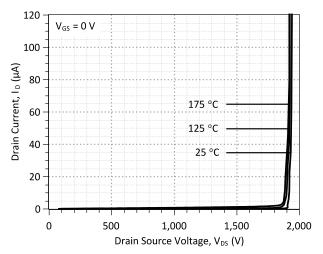
Thermal resistance, junction - case	R _{thJC}	1.03	°C/W

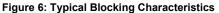


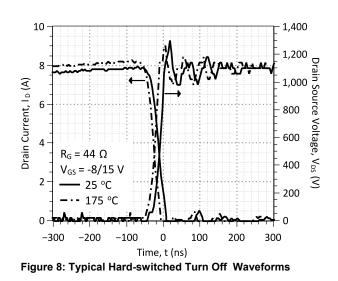


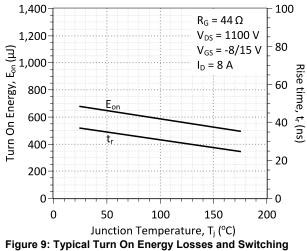
Dυ

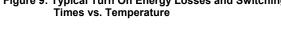

Figure 3: Typical Output Characteristics at 175 °C




Temperature







GeneSiC SEMICONDUCTOR

GA08JT17-247

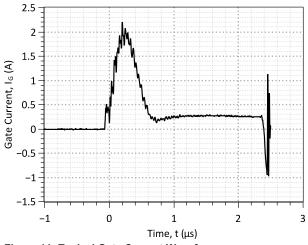
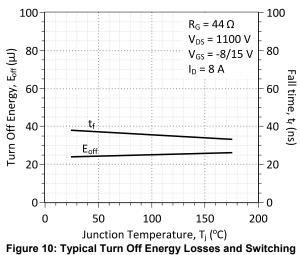



Figure 11: Typical Gate Current Waveform

Times vs. Temperature

Gate Drive Technique (Option #1)

To drive the GA08JT17-247 with the lowest gate drive losses, a custom-designed, dual voltage source gate drive configuration is recommended [for example, see Figure 5(a) in J. Rabkowski et al. IEEE Trans. Power Electronics 27(5), 2633-2642 (2012)]. More details on using this optimized gate drive technique will be made available shortly. An effective simple alternative for ultra-fast switching of the GA08JT17-247 is available below.

Gate Drive Technique (Option #2)

The GA08JT17-247 can be effectively driven using the IXYS IXDN614 / IXDD614 non-inverting gate driver IC or a comparable product. A typical gate driver configuration along with component values using this driver is offered below. Additional information is available from the manufacturer at www.ixys.com.

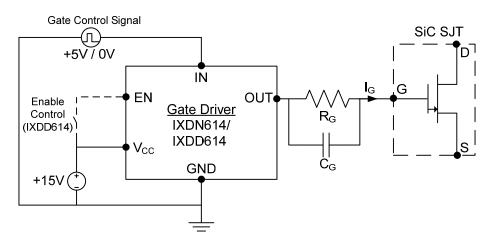
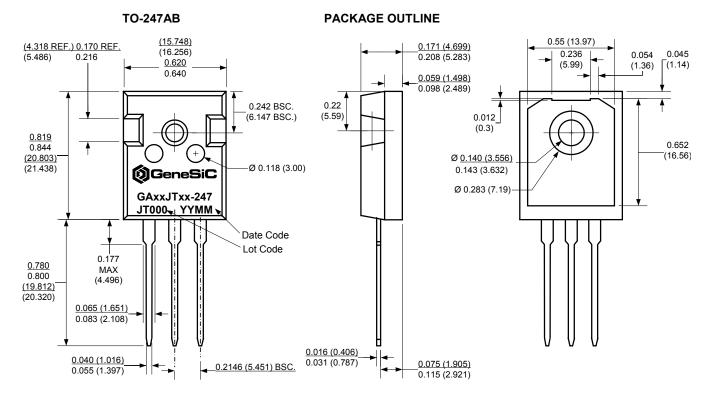



Figure 14: Recommended Gate Diver Configuration (Option #2)

Symbol Conditions	Values			11	
	Conditions	min.	typ.	max.	Unit
V _{CC}		-0.3	15	40	V
IN		-5.0	0	0.8	V
IN		3.0	5.0	V _{cc} +0.3	V
EN	IXDD614 Only			1/3*V _{CC}	V
EN	IXDD614 Only	2/3*V _{CC}			V
V _{OUT}				0.025	V
Vout		V _{CC} -0.025			V
I _{OUT}	Package Limited		4.5	14	А
I _{OUT}			0.5	4.0	А
Ι _{ουτ}			0.5	4.0	
D	1~05	5	22	1	Ω
ő	•	5			nF
	V _{сс} IN IN EN EN EN Vouт Vouт Iouт	$\begin{tabular}{c} V_{CC} \\ \hline IN \\ \hline IN \\ \hline EN & IXDD614 \ Only \\ \hline EN & IXDD614 \ Only \\ \hline V_{OUT} \\ \hline V_{OUT} \\ \hline V_{OUT} \\ \hline I_{OUT} & Package \ Limited \\ \hline I_{OUT} \\ \hline R_G & I_G \approx 0.5 \ A \end{tabular}$	V _{CC} -0.3 IN -5.0 IN 3.0 EN IXDD614 Only EN IXDD614 Only Vout 2/3*V _{CC} Vout V _{CC} -0.025 Iout Package Limited Iout IG≈0.5 A 5	$\begin{tabular}{ c c c c c } \hline Symbol & Conditions & \hline min. & typ. \\ \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline \hline \hline \hline \hline \hline \hline \hline min. & typ. \\ \hline min. & typ. \\ \hline $	$\begin{tabular}{ c c c c c c c } \hline Symbol & Conditions & \hline min. & typ. & max. \\ \hline \end{tabular}$

Package Dimensions:

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2013/02/21	1	Switching Data Added			
2012/12/03	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.