

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

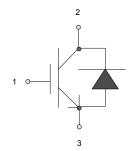
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GA35XCP12-247

IGBT/SiC Diode Co-pack

\mathbf{V}_{CES}	=	1200 V		
I _{CM}	=	35 A		
V _{CE(SAT)}	=	3.0 V		


Features

- Optimal Punch Through (OPT) technology
- SiC freewheeling diode
- · Positive temperature coefficient for easy paralleling
- Extremely fast switching speeds
- Temperature independent switching behavior of SiC rectifier
- Best RBSOA/SCSOA capability in the industry
- High junction temperature
- · Industry standard packaging

Package

• RoHS Compliant

TO - 247AB

Advantages

- Industry's highest switching speeds
- High temperature operation
- Improved circuit efficiency
- Low switching losses

Applications

- Solar Inverters
- Aerospace Actuators
- Server Power Supplies
- Resonant Inverters > 100 kHz
- Inductive Heating
- Electronic Welders

Maximum Ratings, at T_i = 150 °C, unless otherwise specified

Parameter	Symbol	Conditions		Values		Unit
IGBT						
Collector-Emitter Voltage	V _{CES}			1200		V
DC-Collector Current	I _{CM}	T _c ≤ 105 °C		35		Α
Gate Emitter Peak Voltage	V _{GES}			± 20		V
Operating Temperature	T _{vi}		-	40 to +15	i0	°C
Storage Temperature	T _{stg}		-	40 to +15	0	°C
Free-wheeling diode						
DC-Forward Current	I _F	T _c ≤ 105 °C	35			Α
Non Repetitive Peak Forward Current	I _{FM}	$T_c = 25 ^{\circ}\text{C}, t_p = 10 \mu\text{s}$		tbd		Α
Surge Non Repetitive Forward Current	I _{F,SM}	t_p = 10 ms, half sine, T_c = 25 °C		tbd		Α
Thermal Characteristics						
Th. Resistance Junction to Case	R_{thJC}	IGBT	0.34		K/W	
Th. Resistance Junction to Case	R _{thJC}	SiC diode		0.31		K/W
Mechanical Properties			Values			
mechanical Froperties			min.	typ.	max.	
Mounting Torque	M_{d}		1.5		2	Nm

Electrical Characteristics

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	Unit
IGBT						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0.6 \text{ mA}, T_{j} = 25 ^{\circ}\text{C}$	5.5	6	6.5	V
Collector-Emitter Leakage Current	I _{CES,25}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_{j} = 25 \text{ °C}$		0.02	0.2	mA
Collector-Emitter Leakage Current	I _{CES,150}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_j = 150 ^{\circ}\text{C}$		0.3		mA
Gate-Leakage Current	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$			500	nΑ
Collector-Emitter Threshold Voltage	$V_{CE(TO)}$	T _j = 25°C		1.1		V
Collector-Emitter Slope Resistance	R _{CE,25}	$V_{GE} = 15 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$		50		mΩ
Collector-Emitter Stope Resistance	R _{CE,150}	$V_{GE} = 15 \text{ V}, T_{j} = 150 ^{\circ}\text{C}$		87.5		mΩ
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 35 A, V _{GE} = 15 V, T _j = 25 °C(150 °C)		3.0(3.9)		V
Input Capacitance	C _{ies}			tbd		nF
Output Capacitance	C _{ne}	V _{GE} = 0 V, V _{CE} = 25 V, f = 1 MHz		tbd		nF
Reverse Transfer Capacitance	C _{res}			tbd		nF
Gate Charge	$Q_{_{\mathrm{G}}}$	$V_{CC} = 800 \text{ V}, I_{C} = 35 \text{ A}, V_{GE} = 15 \text{V}$		50		nC
Reverse Bias Safe Operating Area	RBSOA	T_j =125 °C, R_g =56 Ω , V_{CC} =1200 V, V_{GE} =15 V		45		Α
Short Circuit Current	l _{sc}	$T_{j} = 125 {}^{\circ}\text{C}, R_{g} = 56\Omega,$		60		Α
Short Circuit Duration	t _{sc}	$V_{CC} = 900 \text{ V}, V_{GE} = \pm 15 \text{ V}$			10	μs
Rise Time	t _r			85		ns
Fall Time	t,	$V_{cc} = 800 \text{ V}, I_{c} = 35 \text{ A},$		205		ns
Turn On Delay Time	t _{d(on)}	$R_{qon} = R_{qoff} = 22 \Omega$		40		ns
Turn Off Delay Time	t _{d(off)}	V _{GE(0n)} = 15 V, V _{GE(0ff)} = -8 V, T _j = 125 °C	232		ns	
Turn-On Energy Loss Per Pulse	E		2.66		mJ	
Turn-Off Energy Loss Per Pulse	E _{off}			4.35		mJ
Free-wheeling diode						
Forward Voltage	$V_{\rm F}$	$I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}, T_j = 25 \text{ °C (150 °C)}$		2.6(3.5)		V
Threshold Voltage at Diode	V _{D(TO)}	T _j = 25 °C		0.8		V
Peak Reverse Recovery Current	Irrm			3.01		Α
Reverse Recovery Time	t _{rr}	$I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}, V_R = 650 \text{ V}$		36		ns
Diode peak rate of fall of reverse recovery current during tb	dl _{rr} /dt	-dI _F /dt = 300 A/μs, T _j = 125 °C		190		A/µs

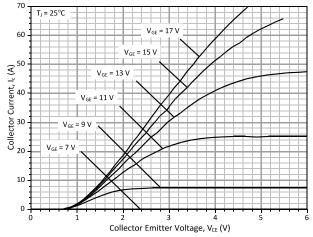


Figure 1: Typical Output Characteristics at 25 °C

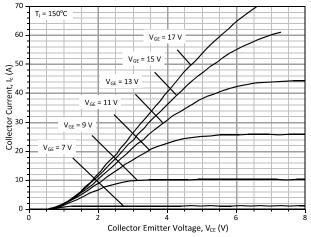


Figure 2: Typical Output Characteristics at 150 °C

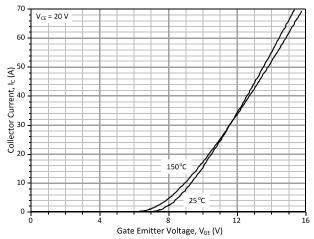


Figure 3: Typical Transfer Characteristics

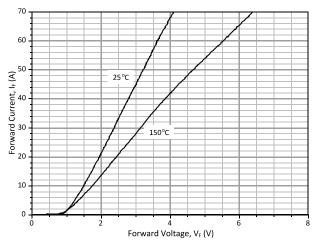


Figure 5: Typical FWD Forward Characteristics

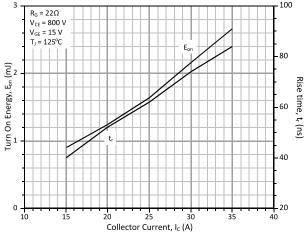


Figure 7: Typical Turn On Energy Losses and Switching Times



Figure 4: Typical Blocking Characteristics

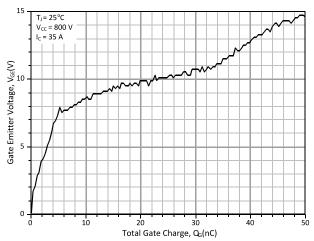


Figure 6: Typical Turn On Gate Charge

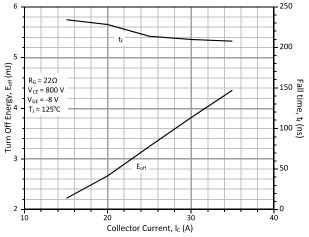


Figure 8: Typical Turn Off Energy Losses and Switching Times

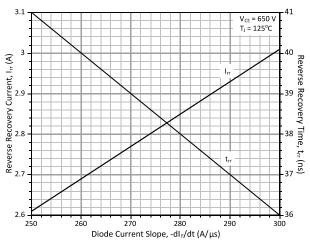
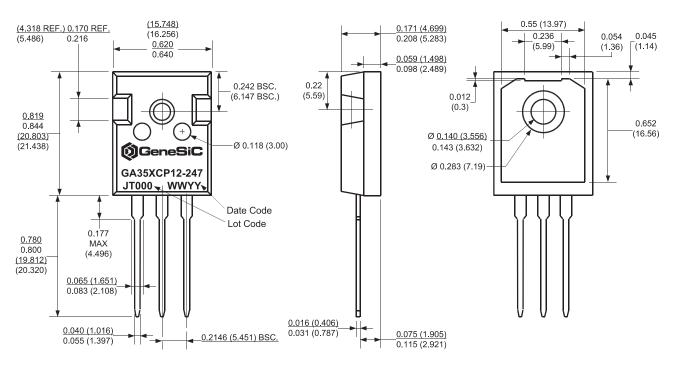



Figure 9: Typical Reverse Recovery Currents and Times

Package Dimensions:

TO-247AB

PACKAGE OUTLINE

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History				
Date	Revision	Comments	Supersedes	
2011/01/06	1	First generation release		

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.