

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

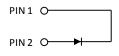
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GAP3SLT33-214

Silicon Carbide Power Schottky Diode

V_{RRM} = 3300 V $I_{F (Tc \le 125^{\circ}C)}$ = 0.3 A Q_{C} = 20 nC


Features

- Industry's leading low leakage currents
- 175 °C maximum operating temperature
- Electrically isolated base-plate
- Positive temperature coefficient of V_F
- · Fast switching speeds
- Superior figure of merit Q_C/I_F

Package

RoHS Compliant

SMB / DO - 214AA

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- High Voltage Multipliers
- Military Power Supplies

Advantages

- Low reverse leakage current at operating temperature
- Improved circuit efficiency (Lower overall cost)
- Significantly reduced switching losses compare to Si PiN diodes
- · Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Low reverse recovery current
- Low device capacitance

Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		3300	V
Continuous forward current	I _F	T _C ≤ 125 °C	0.3	Α
RMS forward current	$I_{F(RMS)}$	T _C ≤ 125 °C	0.35	Α
Surge non-repetitive forward current, Half Sine	le ou	$T_C = 25 ^{\circ}C, t_P = 10 \text{ms}$	2	Δ
Wave	I _{F,SM}	$T_C = 125 ^{\circ}C, t_P = 10 \text{ms}$	1	A
Non-repetitive peak forward current	$I_{F,max}$	$T_C = 25 ^{\circ}\text{C}, t_P = 10 \mu\text{s}$	10	Α
I ² t value	∫i² dt	$T_C = 25$ °C, $t_P = 10$ ms	0.1	A^2S
Power dissipation	P_{tot}	T _C = 25 °C	25	W
Operating and storage temperature	T_{j} , T_{stg}		-55 to 175	°C

Electrical Characteristics at T_i = 175 °C, unless otherwise specified

Parameter	Cumahal	Conditions min.			Values		Unit
	Symbol			typ.	max.		
Diode forward voltage	V _F	$I_F = 0.3 \text{ A}, T_j = 3$	25 °C		1.7	2.2	<u></u>
Diode forward voltage	٧F	$I_F = 0.3 \text{ A}, T_j = 175 ^{\circ}\text{C}$			4.0	5.0	V
Poverse current	ı	$V_R = 3300 \text{ V}, T_j = 25 ^{\circ}\text{C}$		1	10	^	
Reverse current	IR	$V_R = 3300 \text{ V}, T_j = 175 ^{\circ}\text{C}$			10	100	μΑ
Total capacitive charge	Qc		V _R = 1500 V		20		nC
Switching time	ts	dl _F /dt = 35 A/μs Τ _j = 175 °C	V _R = 1500 V		< 60		ns
		$V_R = 1 V, f = 1 MHz,$	T _j = 25 °C		42		
Total capacitance	С	$V_R = 400 \text{ V}, f = 1 \text{ MHz}$	2, T _j = 25 °C		8		pF
		$V_R = 1000 \text{ V}, f = 1 \text{ MH}$	z, T _j = 25 °C		7		

Thermal Characteristics

Thermal resistance, junction – Cu lead frame	R_{thJC}	1.42	°C/W

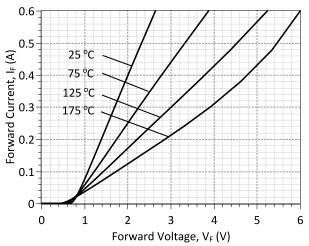


Figure 1: Typical Forward Characteristics

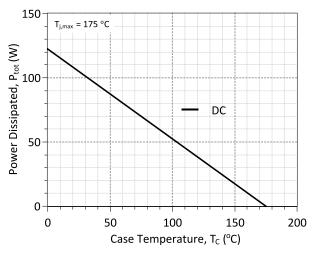


Figure 3: Power Derating Curve

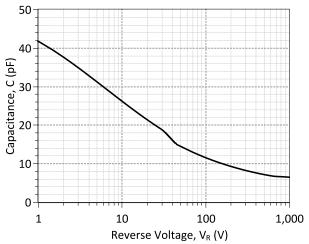


Figure 5: Typical Junction Capacitance vs Reverse Voltage Characteristics

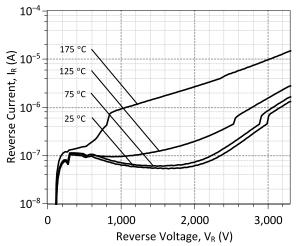


Figure 2: Typical Reverse Characteristics

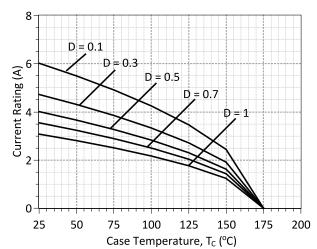


Figure 4: Current Derating Curves (D = t_p/T , t_p = 400 μ s) (Considering worst case Zth conditions)

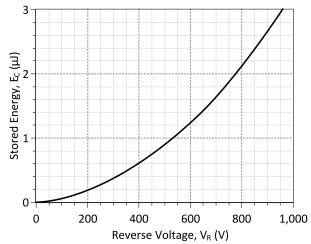


Figure 6: Typical Capacitive Energy vs Reverse Voltage Characteristics

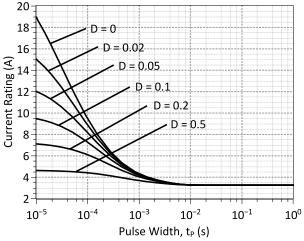


Figure 7: Current vs Pulse Duration Curves at $T_c = 150 \, ^{\circ}\text{C}$

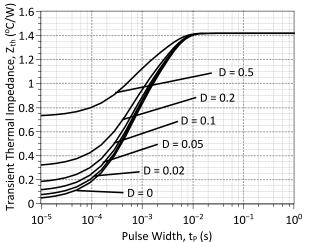
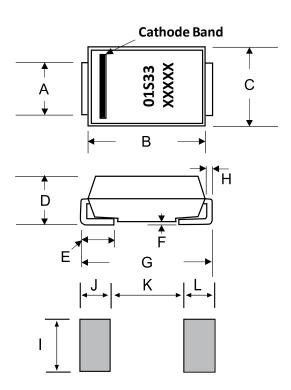



Figure 8: Transient Thermal Impedance

Package Dimensions:

SMB / DO-214AA

PACKAGE OUTLINE

Dimensions	Inches		Millimeters		
Difficusions	Min	Max	Min	Max	
А	0.077	0.086	1.950	2.200	
В	0.160	0.180	4.060	4.570	
С	0.130	0.155	3.300	3.940	
D	0.084	0.096	2.130	2.440	
E	0.030	0.060	0.760	1.520	
F	-	0.008	-	0.203	
G	0.205	0.220	5.210	5.590	
Н	0.006	0.012	0.152	0.305	
1	0.089	-	2.260	-	
J	0.085	-	2.160	-	
K	-	0.107	-	2.740	
L	0.085	-	2.160	-	

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS 3. CONTROLLED LEAD COPLANARITY <0> 0.004 INCH MAXIMUM

Revision History						
Date	Revision	Comments	Supersedes			
2014/12/19	2	Updated Electrical Characteristics				
2014/08/26	1	Updated Electrical Characteristics				
2013/09/09	0	Initial Release				

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/products_sic/rectifiers/GAP3SLT33-214_SPICE.pdf) into LTSPICE (version 4) software for simulation of the GAP3SLT33-214.

```
MODEL OF GeneSiC Semiconductor Inc.
*
                                 $
     $Revision: 1.0
     $Date: 09-SEP-2013
     GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
     Dulles, VA 20166
     COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
 Start of GAP3SLT33-214 SPICE Model
.SUBCKT GAP3SLT33 ANODE KATHODE
R1 ANODE INT R=((TEMP-24)*0.0535); Temperature Dependant Resistor
D1 INT KATHODE GAP3SLT33 25C; Call the 25C Diode Model
D2 ANODE KATHODE GAP3SLT33 PIN; Call the PiN Diode Model
.MODEL GAP3SLT33 25C D
+ IS
           1.39E-14
                           RS
                                       2.88
          1.0120127
                                       36.05007504
+ N
                           IKF
+ EG
          1.2
                           XTI
                                       -3
+ CJO
                                       0.924257443
          6.01E-11
                           VJ
          0.3084545
                           FC
                                       0.5
+ TT
          1.00E-10
                                       3300
                           BV
          1.00E-03
                                       3300
+ IBV
                           VPK
           3.00E-01
                                       SiC Schottky
+ IAVE
                           TYPE
          GeneSiC Semiconductor
+ MFG
.MODEL GAP3SLT33 PIN D
+ IS
          178.99E-18
                           RS
                                       15
           5
+ N
                           ΕG
                                       3.23
          50
+ XTI
                           FC
                                       0.5
                                       3300
+ TT
           0
                           BV
           1.00E-03
+ IBV
                           VPK
                                       3300
+ IAVE
           3.00E-01
                           TYPE
                                       SiC PiN
.ENDS
```

* End of GAP3SLT33-214 SPICE Model