

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

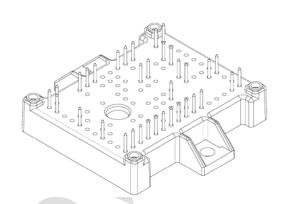
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

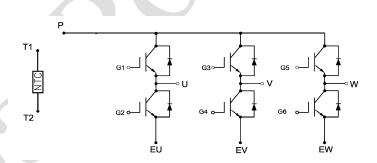
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



GCMS080A120B3C1 1.2kV 80 mohm SiC MOSFET 6-Pack Module


Features:

- Ultra Low Loss
- High-Frequency Operation
- Zero Reverse Recovery Current from SiC SBDs
- Small Turn-off Tail Current from SiC MOSFETs
- Normally-off Device Operation
- Low Stray Inductance
- Lead Free, Compliant with RoHS Requirement

Applications:

- Industrial Motor Drivers
- Solar Inverters
- UPS and SMPS
- Three-Phase PFC

Maximum Rated Values (T_C=25 °C Unless otherwise specified)

Parameters	Symbol	Conditions	Specifications	Units
Drain - Source Voltage	V_{DS}		1200	V
Continuous Drain Current (Q1, Q4)		V_{GS} =20V, T_{C} = 25 0 C	40	Α
Continuous Drain Current (Q1-Q4)	I _D	V_{GS} =20V, T_{C} = 80 0 C	20	Α
Gate - Source Voltage	V _{GS}		+25/-10	V
Pulsed Drain Current	I _{DS}	Limited by Tj_max	60	Α
Manimum Barray Dissipation	P _D	$T_{\rm C} = 25{}^{\rm 0}{\rm C}$	220	W
Maximum Power Dissipation		$T_{\rm C} = 100^{0}{\rm C}$	TBD	W
Operating Junction Temperature	T _j		-40 ~ +150	°C
Storage Temperature	T _{STG}		-40 ~ +125	°C
Solder Temperature	T _L	Max for 10 sec	260	°C

Page 1 of 6 Rev. 1.0 4/13/2015

Electrical Characteristics of MOSFETs (T_j=25°C unless otherwise specified)

Parameters	Symbol	Conditions	Min	Тур	Max	Units
OFF						
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V		1	100	uA
Gate-Source Leakage Current	I _{GSS}	V _{DS} = 0V, V _{GS} = 20V			±250	nA
ON			•			
Gate-Source Threshold Voltage	V _{GS(TH)}	V _{DS} = 10V, I _D = 1mA	1.7	2.2		V
On State Resistance	R _{DS(ON)}	$V_{GS} = 20V, I_D = 20A, T_j = 25$ ^o C		80		mΩ
		$V_{GS} = 20V$, $I_D = 20A$, $T_j = 150$ $^{\circ}$ C		150	Y - ,	$m\Omega$
DYNAMIC				1		
Input Capacitance	C _{ISS}	$V_{DS} = 800V$, $V_{GE} = 0V$, $f = 1 MHz$	'	950		pF
Output Capacitance	C _{oss}			80		pF
Reverse Transfer Capacitance	C _{RSS}			6.5		pF
Module Stray Inductance	L _?			TBD		nH
Module Lead Resistance	R _{mod}			TBD		mΩ
SWITCHING	-IL)			
Turn-On Delay Time	t _{d(on)}			15		ns
Rise Time	t _r	V_{DD} = 800V, I_{D} =20A R_{G} = 2.5 Ω , V_{GS} = -5/20V		35		ns
Turn-Off Delay Time	t _{d(off)}	Inductive Load, T _J =25 °C		32		ns
Fall Time	t _f			26		ns
Turn-On Switching Energy Loss	E _{ON}			0.4		mJ
Turn-Off Switching Energy Loss	E _{OFF}			0.25		mJ
Turn-On Delay Time	t _{d(on)}			TBD		ns
Rise Time	t _r	V_{DD} = 800V, I_{D} =20A R_{G} = 2.5 Ω , V_{GS} =-5/20V		TBD		ns
Turn-Off Delay Time	t _{d(off)}	Inductive Load, T _J =125 °C		TBD		ns
Fall Time	t _f			TBD		ns
Turn-On Switching Energy Loss	E _{ON}			TBD		mJ
Turn-Off Switching Energy Loss	E _{OFF}			TBD		mJ
Total Gate Charge	Q_G	V _{DD} = 800V, I _D =20A		49.2		nC
Gate-Source Charge	Q_{GS}	V _{GS} = -5/20V		10.8		nC
Gate-Drain Charge	Q_{GD}			18		nC
Short Circuit Withstanding Time	t _{sc}	V _{CC} = 800V, V _{GS} = 20V T _J =125 °C	TBD			μS

Page 2 of 6 Rev. 1.0 4/13/2015

SiC Freewheeling Diode Characteristics

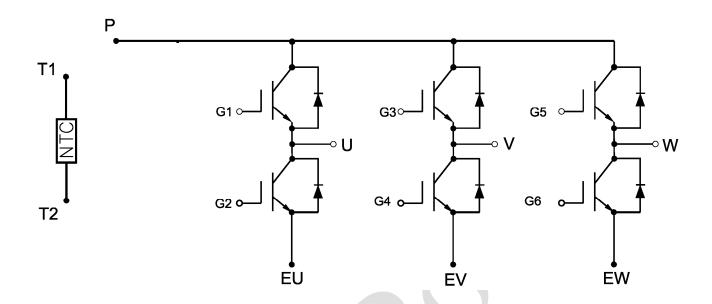
Parameters	Symbol	Conditions	Min	Тур	Max	Units
Max continuous drain-source diode	I _S			20		Α
forward current						
Max pulsed drain-source diode forward current	I _{SM}			60		Α
Diode forward voltage	V_{SD}	V_{GS} =-5V, I_{SD} =20A		1.7		>
Reverse recovery charge	Q_{C}	V_{GS} =-5V, I_{SD} =20A, T_{j} =25°C		102		nC

Thermal Characteristics

Parameters	Symbol	Conditions	Min	Тур	Max	Units
Thermal Resistance Junction to Case:	R _{thJCM}	T _C =80 °C	1	0.59		°C/W
MOSFET						
Thermal Resistance Junction to Case:	R _{thJCD}	T _C =80 °C		1.13		°C/W
SBD				7		

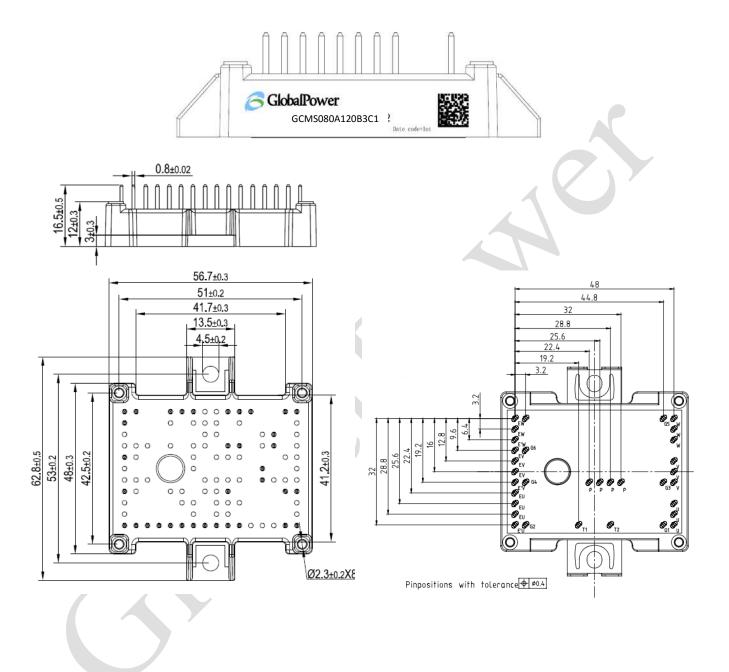
Internal NTC-Thermistor Characteristic

Symbol	Description	Min	Тур	Max	Unit
R ₂₅	T _C =25℃		5		kΩ
△R/R	T _C =100°C, R ₁₀₀ =481Ω			±5	%
P ₂₅	T _C =25°C		50		mW
B _{25/50}	$R_2=R_{25} \exp[B_{25/50}(1/T_2-1/(298.15K))]$		3380		К
B _{25/80}	$R_2=R_{25} \exp[B_{25/80}(1/T_2-1/(298.15K))]$		3440		К


Module

Symbol	Description			Тур	Max	Unit
V _{iso}	Isolation Voltage(All Terminals Shorted)	f = 50Hz, 1minute			2500	V
T _{JOP}	Maximum Operating Junction Temperature Range				+150	$^{\circ}$
T _{stg}	Storage Temperature				+125	$^{\circ}$ C
R _{ecs}	Case-To-Sink (Conductive Grease Applied)			0.05		°C/W
Т	Mounting Screw:M4				1.5	N·m
G	Weight			40		g

Page 3 of 6 Rev. 1.0 4/13/2015



Internal Circuit:

Page 4 of 6 Rev. 1.0 4/13/2015

Package Outline (Unit: mm):

Page 5 of 6 Rev. 1.0 4/13/2015

Revision History

Date	Revision	Notes
9/30/2016	1.0	Initial release

Global Power Technologies Group

20692 Prism Place Lake Forest, CA 92630 TEL (949) 207-7500 FAX (949) 613-7600

E-mail: info@gptechgroup.com
Web site: www.gptechgroup.com

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.gptechgroup.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at GPTG Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration.

REACh banned substance information (REACh Article 67) is also available upon request.

- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.
- To obtain additional technical information or to place an order for this product, please contact
 us. The information in this datasheet is provided by Global Power Technologies Group.
 GPTG reserves the right to make changes, corrections, modifications, and improvements of
 datasheet without notice.

Page 6 of 6 Rev. 1.0 4/13/2015