

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

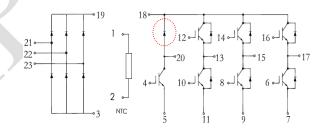
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GHIS030A060B1P2 Si IGBT/ SiC SBD PIM Module


Features:

- Short Circuit Rated 10µs
- Low Saturation Voltage: $V_{CE (sat)} = 1.80V @ I_C = 30A$, $T_C = 25 ° C$
- Low Switching Loss
- SiC SBD for boost diode: V_F = 1.70V @ I_F = 20A , T_C =25 $^{\circ}$ C
- 100% RBSOA Tested (2×Ic)
- Low Stray Inductance
- Lead Free, Compliant with RoHS Requirement

Applications:

- Industrial Inverters
- Servo Applications

IGBT, Inverter

Maximum Rated Values (T_C=25 °C unless otherwise specified)

V _{CES}	Collector-Emitter Blocking Voltage	600	V	
V _{GES}	Gate-Emitter Voltage		±20	V
	C Continuous Collector Current	T _C = 80°C	30	Α
Ic	Continuous Collector Current	T _C = 25°C	60	Α
I _{CM}	Repetitive Peak Collector Current	T _J = 150℃	60	Α
t _{SC}	Short Circuit Withstand Time		>10	μs
P _D	Maximum Power Dissipation per IGBT $T_C = 25^{\circ}C$ $T_{Jmax}=150^{\circ}C$		220	W

Page 1 of 12 Rev. 0.1 4/22/2015

Electrical Characteristics of IGBT (T_C =25 $^{\circ}$ C unless otherwise specified)

Static characteristics

Symbol	Description	Conditions	Conditions		Тур	Max	Unit
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I _C = 1 mA, V _{CE}	I _C = 1 mA, V _{CE} = V _{GE}		4.5	5.0	٧
V	Callactar Freitter Caturation Valtage	$I_{\rm C} = 30 {\rm A},$	T _J = 25℃		1.80	2.10	٧
$V_{CE(sat)}$	CE(sat) Collector-Emitter Saturation Voltage $V_{GE} = 15V$	T _J = 125℃		2.00		٧	
I _{CES}	Collector-Emitter Leakage Current	$V_{GE} = 0V,$ $V_{CE} = V_{CES}, T$	V _{GE} = 0V, V _{CE} = V _{CES} , T _J = 25°C			1	mA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = \pm 20V$, $V_{CE} = 0V$, T_{J}				200	nA
C _{ies}	Input Capacitance	$V_{CE} = 25V, V_{GE} = 0V,$ f = 1MHz		7	1.9		nF
C _{oes}	Output Capacitance				0.25		nF

Switching Characteristics

	onaraotoriotico		200			
t _{d(on)}	Turn-on Delay Time		T _J = 25°C		65	ns
td(on)	Tum-on Delay Time		T _J = 125℃		60	115
	Rise Time		T _J = 25℃		50	20
t _r	Rise Time		T _J = 125℃		50	ns
4	Turn off Dolov Time		T _J = 25℃		120	20
t _{d(off)}	$V_{CC} = 300 \text{V}, I_{C} = 30 \text{A}, \\ R_{G} = 20 \ \Omega, V_{GE} = \pm 15 \text{V}, \\ \text{Inductive Load}$	2001/1 204	T _J = 125℃		130	ns
_		$R_G = 20 \Omega, V_{GE} = \pm 15V,$	T _J = 25℃		100	ns
Lf		inductive Load	T _J = 125℃		140	113
_		T _J = 25℃		0.27	m l	
Eon	Turn-on Switching Loss		T _J = 125℃		0.38	mJ
_	Turn off Cuitobing Logo		T _J = 25℃		0.29	
E _{off}	Turn-off Switching Loss		T _J = 125℃		0.44	mJ
Qg	Total Gate Charge		T _J = 25℃		160	nC
RBSOA	Reverse Bias Safe Operation Area	I_C =60A, V_{CC} =480V, V_P =600V, Rg = 15 Ω , V_{GE} =+15V to 0V, T_J =150°C			Trapezoid	
SCSOA	Short Circuit Safe Operation Area	$V_{CC} = 300V, V_{GE} = 15V,$ $T_{J} = 150^{\circ}C$		10		μs
R _{θJC}	IGBT Thermal Resistance: Junction-To-Case				0.56	°C/W

Page 2 of 12 Rev. 0.1 4/22/2015

Diode, Inverter Maximum Rated Values (T_C =25 $^{\circ}$ C unless otherwise specified)

V _{RRM}	Repetitive Peak Reverse Voltage	600	V
I _F	Diode Continuous Forward Current	30	Α
I _{FM}	Diode Maximum Forward Current	60	Α

Electrical Characteristics of FWD (T_C =25 $^{\circ}$ C unless otherwise specified)

Symbol	Description	Condition	ns	Min	Тур	Max	Unit
V _{FM}	Forward Voltage	I _F = 30 A ,	T _J = 25℃	1	1.40	1.60	V
V FM	Polward Vollage	V _{GE} = 0V	T _J = 125℃	7	1.40		V
	Peak Reverse Recovery Current		T _J = 25℃		25		Α
Irr	reak Neverse Necovery Current		T _J = 125℃		30		^
Q _{rr}	Reverse Recovery Charge	I _F =30A, di/dt =900Α/μs,	T _J = 25℃		1.31		C
Qm	Reverse Recovery Charge	$V_{rr} = 300V, V_{GE} = -15V$	T _J = 125℃		2.26		μC
_	Povorno Popovoru Enorgy		T _J = 25℃		0.14		mJ
E _{rec}	Reverse Recovery Energy		T _J = 125℃		0.31		IIIJ
$R_{ heta JC}$	Diode Thermal Resistance: Junction-To-Case				1.51		°C/W

IGBT, Brake-Chopper Maximum Rated Values (T_C=25°C unless otherwise specified)

V_{CES}	Collector-Emitter Blocking Voltage	Collector-Emitter Blocking Voltage		V
V _{GES}	Gate-Emitter Voltage	Gate-Emitter Voltage		V
	Continuos Collegator Consent	T _C = 80°C,	30	Α
Ic	Continuous Collector Current	T _C = 25°C	60	A A μs
I _{CM}	Peak Collector Current Repetitive	T _J = 150°C	60	Α
t _{SC}	Short Circuit Withstand Time	Short Circuit Withstand Time		μS
P _D	Maximum Power Dissipation per IGBT	T _C = 25°C T _{Jmax} =150°C	220	W

Page 3 of 12 Rev. 0.1 4/22/2015

Electrical Characteristics of IGBT (T_C =25 $^{\circ}$ C unless otherwise specified)

Static characteristics

Symbol	Description	Conditions	Conditions		Тур	Max	Unit
$V_{\text{GE(th)}}$	Gate-Emitter Threshold Voltage	I_C = 1 mA, V_{CE}	= V _{GE}	3.0	4.5	5.0	V
M	Callester Freitter Caturation Valtage	I _C = 30 A, T _J = 25°C			1.80	2.10	V
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	V _{GE} = 15V	T _J = 125℃		2.00		V
I _{CES}	Collector-Emitter Leakage Current	V _{GE} = 0V, V _{CE} = V _{CES} , T _J = 25℃				1	mA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = \pm 20V$, $V_{CE} = 0V$, $T_{J} = 0$			K	200	nA
C _{ies}	Input Capacitance	V_{CE} = 25V, V_{GE} = 0V , f = 1MHz			1.90		nF
C _{oes}	Output Capacitance				0.25		nF

Switching Characteristics

<u> </u>	Onaracicnotico					
	Turn on Dolay Time		T _J = 25℃		65	no
t _{d(on)}	Turn-on Delay Time		T _J = 125℃		60	ns
	Rise Time		T _J = 25℃		50	
t _r	, and time		T _J = 125℃		50	ns
	Turn-off Delay Time		T _J = 25℃		120	-
t _{d(off)}	V _{CC} = 300V,I _C = 30A,	T _J = 125℃		130	ns	
	F	$V_{CC} = 300V, I_C = 30A,$ $R_G = 20 \Omega, V_{GE} = \pm 15V,$ Inductive Load	T _J = 25℃		100	-
t _f	Fall Time	inductive Load	T _J = 125℃		140	ns
_			T _J = 25℃		0.27	!
E _{on}	Turn-on Switching Loss		T _J = 125℃		0.38	mJ
_	Turn off Cuitabing Land		T _J = 25℃		0.29	!
E _{off}	Turn-off Switching Loss		T _J = 125℃		0.44	mJ
Qg	Total Gate Charge		T _J = 25℃		160	nC
RBSOA	Reverse Bias Safe Operation Area	I_C =60A, V_{CC} =480V, V_P =600V, Rg = 15 Ω , V_{GE} =+15V to 0V, T_J =150°C		-	Trapezoid	
SCSOA	Short Circuit Safe Operation Area	$V_{CC} = 300V, V_{GE} = 15V,$ $T_{J} = 150^{\circ}C$		10		μs
R _{θJC}	IGBT Thermal Resistance: June				0.56	°C/W

Page 4 of 12 Rev. 0.1 4/22/2015

Maximum Rated Values of SiC SBD Brake-Chopper (T_C=25 ℃ unless otherwise specified)

Symbol	Description	Conditions	Value	Unit
V _{RRM}	Repetitive Peak Reverse Voltage	T _j =25 °C	600	V
I _F	Diode Continuous Forward Current	T _C =125 °C, T _j =175 °C	25	Α
I _{F,SM}	Surge Non-repetitive Forward Current	T_C =125 °C, t_p =8.3 ms sine half wave	100	Α
dv/dt	Diode dv/dt Ruggedness	Turn-on slew rate, repetitive	50	V/ns

Electrical Characteristics of SiC SBD (T_C=25 °C unless otherwise specified)

Symbol	Description	Conditions		Min	Тур	Max	Unit
V _R	DC Blocking Voltage	I _R =100 uA	I _R =100 uA				V
V	Forward Voltage	I _F = 20A,	T _J = 25℃		1.7	1.9	V
V _F	Forward Voltage	V _{GE} = 0V	T _J = 175℃	7	2.2		V
	Deverse leakage Current		T _J = 25℃		12	500	
I _R	Reverse leakage Current	V _R =600V	T _J = 175℃		230	μΑ	
Q _C	Total Capacitive Charge	V _R =600V	T _J = 25℃		45		nC
		V _R =1V, f=1 MHz			1054		
С	Total Capacitance	V _R =300V, f=1 MHz			93		pF
		V _R =600V, f=1 MHz			76		
R _{0JC}	Diode Thermal Resistance: Junction-To-Case				TBD	1.2	°C/W

Electrical Characteristics of FWD (T_C=25℃ unless otherwise specified)

Symbol	Description	Conditio	ns	Min	Тур	Max	Unit
	Forward Voltage	I _F = 15 A ,	T _J = 25℃		1.20	1.30	V
V _{FM}	Follward Voltage	V _{GE} = 0V	T _J = 125℃		1.10		V
	Peak Reverse Recovery Current		T _J = 25℃		20		Α
Im	Peak Reverse Recovery Current		T _J = 125℃		30		A
0	Reverse Recovery Charge	I _F =15A, di/dt =690A/μs,	T _J = 25℃		0.82		5
Q _{rr}	Reverse Recovery Charge	$V_{rr} = 300V,$ $V_{GE} = -15V$	T _J = 125℃		1.50		μC
_	Povorno Popovoru Energy		T _J = 25℃		0.12		m
E _{rec}	E _{rec} Reverse Recovery Energy		T _J = 125℃		0.34		mJ
R _{0JC}	Diode Thermal Resistance: Junction-To-Case				1.51		°C/W

Page 5 of 12 Rev. 0.1 4/22/2015

Diode, Rectifier (T_C=25°C unless otherwise specified)

V_{RRM}	Repetitive Peak Reverse Voltage	T _J =25℃	1200	V
I _{FRMSM}	Maximum RMS Forward Current per Chip	T _J =80℃	50	Α
I _{RMSM}	Maximum RMS Current at Rectifier Output	T _J =80℃	60	Α
	Curao Current @t =10 ma	T _J =25℃	420	۸
I _{FSM}	Surge Current @t _p =10 ms	T _J =150℃	350	Α
l ² t	124 yealiya	T _J =25℃	900	• 2
ΙŢ	l ² t - value	T _J =150℃	650	A ² s

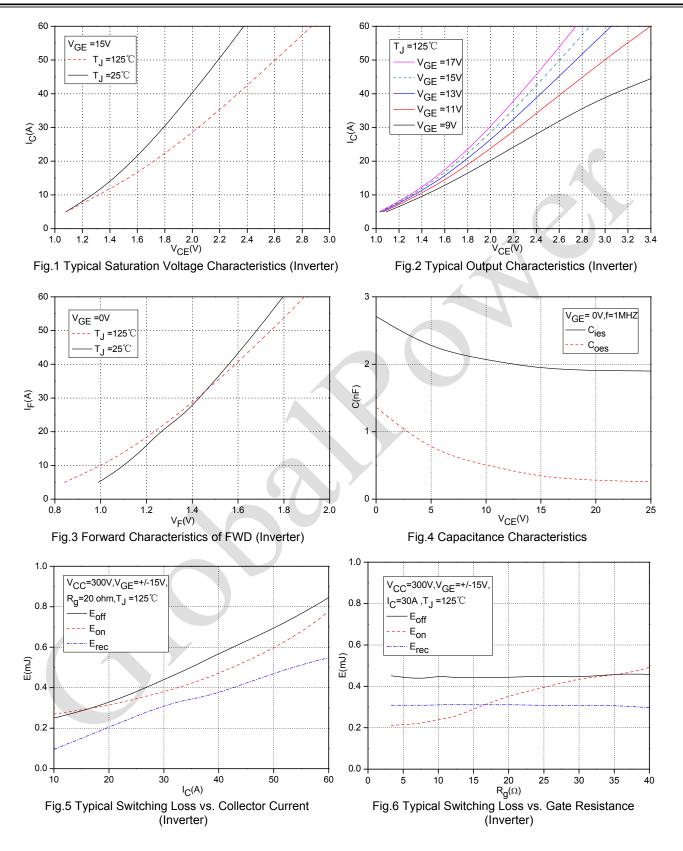
Electrical Characteristics of Diode (T_C=25°C unless otherwise specified)

Symbol	Description	Conditions		Min	Тур	Max	Unit
V _F	Forward voltage	I _F = 30 A	T _J =25℃		1.00		V
			T _J =150℃		0.90		
I _R	Reverse current	V _R =600V	T _J =25℃			1	mA
R _{θJC}	Diode Thermal Resistance: Junction-To-Case				0.59		°C/W

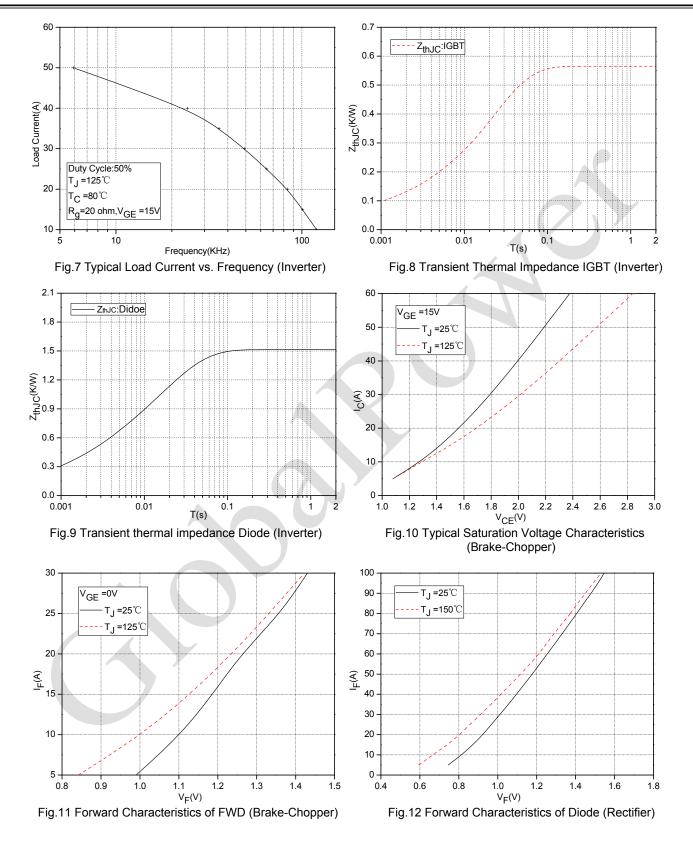
Internal NTC-Thermistor Characteristic

R ₂₅	T _C =25℃	5		kΩ
ΔR/R	$T_{C} = 100^{\circ}C$, $R_{100} = 481\Omega$		±5	%
P ₂₅	T _C =25℃	50		mW
B _{25/50}	$R_2=R_{25} \exp[B_{25/50}(1/T_2-1/(298.15K))]$	3380		К
B _{25/80}	$R_2=R_{25} \exp[B_{25/80}(1/T_2-1/(298.15K))]$	3440		К

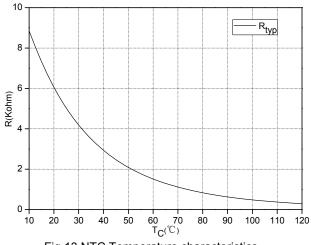
Page 6 of 12 Rev. 0.1 4/22/2015



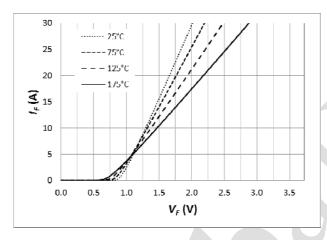
Module


Symbol	Description		Min	Тур	Max	Unit
V _{iso}	Isolation Voltage(All Terminals Shorted)	f = 50Hz, 1minute			2500	V
TJ	Maximum Junction Temperature				150	$^{\circ}$
T _{JOP}	Maximum Operating Junction Temperature Range		-40		+150	$^{\circ}$
T _{stg}	Storage Temperature				+125	$^{\circ}$
R _{ecs}	Case-To-Sink (Conductive Grease Applied)			0.1	1)	°C/W
Т	Mounting Screw:M4				1.5	N·m
G	Weight		1	25		g

Page 7 of 12 Rev. 0.1 4/22/2015



Page 9 of 12 Rev. 0.1 4/22/2015



60 50 40 40 20 10 Module ---- Chip 0 100 200 300 400 500 600 V_{CES}(V)

Fig.13 NTC Temperature characteristics

Fig.14 Reverse Bias Safe Operation Area (RBSOA)

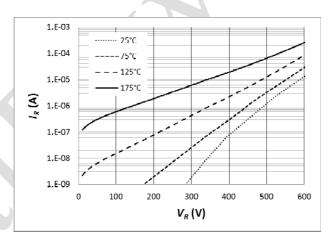
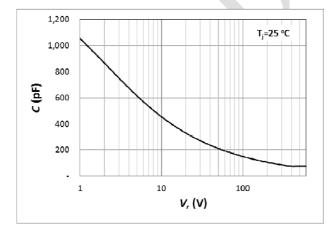



Fig. 15 Forward Characteristics of SiC Diode (Boost)

Fig. 16 Leakage Current of SiC Diode (Boost)

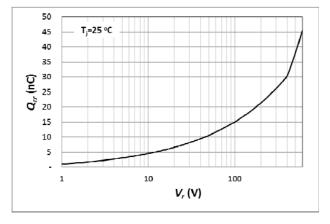
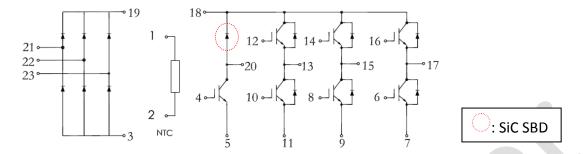
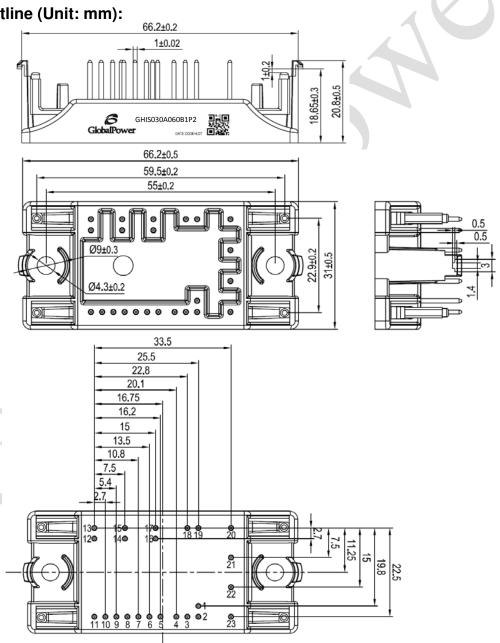



Fig. 17 Capacitance Characteristics of SiC Diode (Boost)


Fig. 18 Recovery Charge of Boost SiC Diode (Boost)

Page 10 of 12 Rev. 0.1 4/22/2015

Internal Circuit:

Package Outline (Unit: mm):

Revision History

Date	Revision	Notes	
4/22/2015	0.1	Initial release of preliminary datasheet	

Global Power Technologies Group

20692 Prism Place Lake Forest, CA 92630 TEL (949) 207-7500 FAX (949) 613-7600

E-mail: info@gptechgroup.com
Web site: www.gptechgroup.com

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.gptechgroup.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at GPTG Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration.

REACh banned substance information (REACh Article 67) is also available upon request.

- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.
- To obtain additional technical information or to place an order for this product, please contact
 us. The information in this datasheet is provided by Global Power Technologies Group.
 GPTG reserves the right to make changes, corrections, modifications, and improvements of
 datasheet without notice.

Page 12 of 12 Rev. 0.1 4/22/2015