

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GN4124 x4 Lane PCI Express to Local Bridge

Data Sheet

Revision History

Version	ECR	Date	Changes and Modifications
2	151915	May 2009	Created new document describing functionality and the register map for GN4124 & GN4121 devices. These common sections have been removed.
1	151527	May 2009	It is now a Data Sheet.
			Added the content of the document: GN4124 x4 PCI Express to Local Bus Bridge User Manual (Document ID: 47719) to this data sheet. This User Manual is no longer a stand-alone document.
			Changed some parameters in Table 2-1 (EEPROM_EN), Table 3-2, Table 3-3, Table 5-2 and Table 13-2.
			Changed Figure 4-2, Figure 6-2, Figure 7-1 and Figure 9-16.
			Modified descriptions in 9.4 Operation, 9.7.3 FCL FPGA Configuration and 9.7.4 FCL FSM FPGA Configuration.
			Changes to registers to PCI_BAR0_LOW, PCI_BAR2_LOW, PCI_BAR2_HIGH, PCI_BAR4_LOW, PCI_BAR4_HIGH, PCI_SUB_VENDOR, PCI_SUB_SYS, PCIE_DEVICE_CAP, PCIE_DCR, INT_CTRL, INT_STAT, INT_CFG0-7, GPIO_DIRECTION_MODE, GPIO_OUTPUT_ENABLE, GPIO_OUTPUT_VALUE, GPIO_INT_MASK, GPIO_INT_MASK_CLR (Note: formerly GPIO_INT_ENABLE), GPIO_INT_MASK_SET (Note: formerly GPIO_INT_DISABLE), GPIO_INT_STATUS, GPIO_INT_TYPE, GPIO_INT_VALUE, GPIO_INT_ON_ANY and FCL_CTRL.
D	151519	March 2009	Clarified output voltage and local bus timing in Table 3-6 and Table 3-11.
С	150789	December 2008	Corrected pin assignments and definitions. Updated electrical characteristics. Corrected Figure 2-2. Updated Local Bus Interface clock range.
В	150182	August 2008	Corrected pin assignments, part number and other updates.
Α	148626	May 2008	New document.

Contents

l. In	troduction	4
	1.1 Features	4
	1.2 Live on Power-up	5
	1.3 FPGA On-the-Fly Configuration Loader	6
	1.4 Local Bus Interface	6
	1.5 Virtual Channel Support	6
	1.6 PCI Express Application Layer	7
	1.7 Interrupt Controller	7
	1.8 2-Wire Serial Controller	
	1.9 Data Sheet Usage	7
	1.10 Getting Help from Gennum	

1.11 Getting Answers to PCI Express Related Questions	8
2. Pin Descriptions	9
2.1 Pin Assignments	9
2.2 Pin Descriptions	10
3. Electrical Characteristics	16
3.1 Absolute Maximum Ratings	16
3.2 Operating Conditions	16
3.3 DC Electrical Characteristics	17
3.4 PCI Express Electrical Characteristics	18
3.4.1 PCI Express Transmitter Characteristics	18
3.4.2 PCI Express Receiver Characteristics	21
3.4.3 Local Bus Timing	22
3.4.4 Local Clocks' Pins Settings	24
4. Overview	25
4.1 GN4124 Signals	26
5. Package & Ordering Information	27
5.1 Package Dimensions	27
5.2 Packaging Data	28
5.3 Ordering Information	28

GN4124 x4 Lane PCI Express to Local Bridge Data Sheet

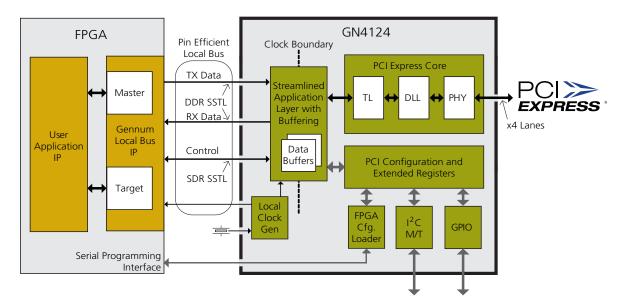
1. Introduction

For the past decade, PCI has been a dominant interconnect for both PC and embedded systems. With the shift to high-speed serial interfaces, PCI Express® is quickly replacing parallel PCI. As a leader in providing solutions for high-speed serial communications, Gennum has developed the GN4124 family of PCI bridge controller components to complement FPGA devices. The GN4124 is specifically designed to take advantage of the architectural features of low-cost FPGA devices that do not have PCI Express capable SerDes on-chip. The result is a low-cost bridging solution for high-performance native PCI Express bridging.

The GN4124 is a desirable companion to large FPGA devices, where the requirement for firmware upgrading and on-the-fly reconfiguration are required.

The GN4124 is a 4-lane PCI Express to local bus bridge that is designed to work as a companion for FPGA devices to provide a complete bridging solution for general applications. In addition to a 4-lane PCI Express compliant PHY interface, the GN4124 contains the link and transaction layers, and an applications interface that is ideally suited to FPGA interfacing using a small number of pins.

Since the PCI Express transaction/link IP is hard-wired into the GN4124, there is no need to license PCIe IP. The level of integration and very low power operation of the GN4124 make it an ideal alternative to using a PIPE PHY, where IP licensing and the cost of FPGA resources and power consumption is unattractive by comparison. Using the GN4124, allows FPGA resources to be spent on what differentiates the product, rather than on implementing the PCI Express protocol.


1.1 Features

- 4 Lane PCI Express interface
 - Complies with PCI Express Base Specification 1.1
 - On-chip PHY, transaction, and link layer eliminates the cost of IP licensing
 - Two hardware virtual channels supported
 - Payload size of up to 512 bytes with up to three outstanding transactions in each direction
 - Supports 3x64-bit base address registers
 - Provides flexible power management capability
- Provides pin efficient local bus interface for easy attachment to popular low-cost FPGA devices
 - Uses DDR SSTL I/O for high-speed data transfer (up to 800MB/s)

- FPGA source code provided for 64-bit master/target read/write buses for easy user logic attachment
- Local bus may be operated asynchronously to the PCIe clock rate for power optimization
- "Live" on power up
 - On-chip type 0 PCI configuration space enables auto detection without FPGA activity
 - On-chip extended configuration space supports power management, serial number, MSI, and PCIe capability registers
- FPGA bitstream loader
 - Allows easy configuration of the attached FPGA through PCIe
 - Provides on-the-fly FPGA reconfiguration capability
- 2-wire master/target
 - Boot master mode allows PCI configuration space defaults to be loaded from a small EEPROM upon system reset
 - General master mode allows attached 2-wire devices to be read/written
 - Target mode allows internal registers to be accessed from an external circuit or processor

A simplified block diagram of the GN4124 chip is shown in Figure 1-1.

Figure 1-1: GN4124 with FPGA Simplified Block Diagram

1.2 Live on Power-up

Since the GN4124 contains a complete type 0 PCI configuration space, it is live on power-up so that a plug-and-play BIOS can auto-detect it and enumerate it without an attached FPGA having to be configured.

1.3 FPGA On-the-Fly Configuration Loader

An FPGA bitstream may be downloaded from the host system over PCIe to the attached FPGA using the on-chip FPGA configuration loader. This eliminates the expense of a dedicated FPGA ROM and makes on-the-fly reconfiguration and firmware upgrades simple. The ability to dynamically configure an attached FPGA over PCIe makes the GN4124 an ideal companion to all ranges of FPGA devices, including large SerDes capable devices, that require reconfiguration or firmware upgrades over PCIe.

1.4 Local Bus Interface

The local bus interface uses a combination of single and dual data rate SSTL I/O to accomplish very high data rates in the fewest possible pins. A singe data rate clock is used for SSTL control signals and separate dual data rate source synchronous clocking is used for the DDR SSTL data. The SDR control signals operate at up to 200MHz and the DDR I/O operate at up to 400MT/s across 16 bits using a 200MHz DDR clock. This provides 800MB/s in each direction.

The local bus may operate asynchronously from the PCI Express rate. In order to save power, the local bus clock can operate at the lowest possible rate required by an application.

The local bus protocol facilitates four types of transactions:

- PCIe-to-Local Target Writes: A PCIe agent (such as the host processor/root complex) writes data to the local bus.
- PCIe-to-Local Target Reads: A PCIe agent reads data from the local bus. Reads are split into a request phase (address phase) and a completion phase (data phase).
- Local-to-PCIe Master Writes: The attached FPGA writes data to a PCIe device (such as host memory via a root complex).
- Local-to-PCIe Master Reads: The attached FPGA reads data from a PCIe device.

The PCIe-to-Local transactions would typical involve a target controller implemented in the FPGA. Local-to-PCIe Master transactions allow a DMA controller in the FPGA to access PCI Express devices.

1.5 Virtual Channel Support

The GN4124 has two independent virtual channels that support the eight PCIe defined traffic classes. This enables high local bus utilization by supporting non-blocking traffic between virtual channels. This is accomplished with separate on-chip buffering resources for each of the two virtual channels. For example, when write buffering is full for VC0 and VC1 has room, then VC1 traffic may proceed without reference to the state of VC0.

Virtual channels may be used to separate different types of application traffic. For example, a DMA engine in the FPGA may be aggressively reading and writing host memory to stream video data. At the same time another agent in the FPGA may need to communicate low bandwidth, latency sensitive synchronization information. If the two

types of traffic are segregated in terms of virtual channels and traffic classes, then the low latency traffic can be allowed to pass the high bandwidth traffic.

1.6 PCI Express Application Layer

The on-chip applications layer transfers data between the PCI Express port and an attached FPGA using the local bus interface. It provides a mechanism to access internal registers through configuration space access and through one of the Base Address Registers (BAR4). The applications layer supports the transmission of message signalled interrupts.

1.7 Interrupt Controller

A flexible interrupt controller automatically generates PCIe message signalled interrupts from either external pins (GPIO pins) or internally generated interrupt sources. The interrupt controller can route any interrupt source to up to four GPIO pins.

1.8 2-Wire Serial Controller

An on-chip I²C compatible controller provides both a master and target mode. After device reset, default configuration register values, such as Subsystem Vendor ID and BAR sizes, can be automatically loaded from a small serial EEPROM. After initialization, an external 2-wire master can access on-chip registers to read/write them.

1.9 Data Sheet Usage

The GN4124 Data Sheet includes detailed specifications on GN4124 device. However, there are other complementary documents to assist designers available on the Gennum Web site: www.gennum.com/mygennum. A complete set of documentation includes the following:

- GN4124 Data Sheet (this document)
- GN412x PCI Express Family Reference Manual (Document ID: 52624), which
 provides the details on functionality and the register map associated with the
 GN412x family of chips
- GN4124 Master List of Documents & Electronic Files (Document ID: 52423), which provides a summary of the content of the documentation & electronic files, to help navigate the content on MyGennum
- Reference Design Kit (RDK) board and the asssociated documentation

Following chapters detail the specifications of the GN4124:

- 2. Pin Descriptions
- 3. Electrical Characteristics
- 5. Package & Ordering Information

Before finalizing a system design based on the GN4124, please contact Gennum to verify that you have the most recent specifications.

Gennum is constantly trying to improve the quality of its product documentation. If you have any questions or comments, please contact Gennum Technical Support.

1.10 Getting Help from Gennum

For technical support, contact Gennum by telephone or e-mail. E-mail ensures the quickest response. The most up-to-date technical support information is also posted on the Gennum website. E-mail: vbapps@gennum.com.

1.11 Getting Answers to PCI Express Related Questions

This data sheet assumes a basic understanding of the PCI Express Specification. If you are looking for a copy of the specification please contact the PCI Special Interest group at 503-619-0569 or visit their Web site at: http://www.pcisig.com.

If you are not familiar with the PCI Express specification, a good place to start is by reading one of several books on the subject. One of the most popular is PCI Express System Architecture written by Tom Shanley, Don Anderson, and Ravi Budruk (published by MindShare Inc.).

2. Pin Descriptions

2.1 Pin Assignments

Figure 2-1: GN4124 Pin Assignment

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	VSS_ PCIE	PERn0	VSS_ PCIE	DBG0	DBG7	GPIO15	GPIO9	SPRI_CLK	TDI	GPIO7	GPIO6	SPRI_ DONE	GPIO4	TDO	PLL_TEST _OUT	VSS	Α
В	VDD_ PCIE	PERp0	NC	DBG2	DBG6	GPIO13	GPIO14	RSTIN	GPIO8	SPRI_ DATAOUT	SCLK	TRST	SPRI_XI_ SWAP	SPRI_ STATUS	VSS	L2P_ DATA15	В
С	РЕТр0	VSS_ PCIE	VDD_ PCIE	VSS	DBG5	DBG1	GPIO12	GPIO10	RSTOUT 33	GPIO2	SPRI_ CONFIG	SDATA	LB_REF_ CLK_MO	VSS	L2P_ DATA7	L2P_ DATA14	C
D	PETn0	VSS_ PCIE	VDD_ PCIE	VSS	VDDC	SCAN_EN	DBG3	VDDC	GPIO3	NC	GPIO1	LB_REF_ CLK_MI	VDDC	NC	L2P_ DATA6	VDDC	D
E	VDDP	PETn1	VSS_ PCIE	VSS	EEPROM _EN	TEST_EN	DBG4	VCCO33	VCCO33	VDDC	GPIO5	GPIO0	VDDC	NC	L2P_ DATA5	L2P_ DATA13	Ε
F	VTT_AB	PETp1	VSS_ PCIE	NC	VDDW	VDDC	GPIO11	VCCO33	VCCO33	TMS	TCK	VDDC	VDDC	L2P_RDY	L2P_ DATA4	L2P_ DATA12	F
G	PERp1	VSS_ PCIE	VDDAUX	VSS	PECLKINp	VSS	VSS	VSS	VSS	VSS	VSS	VDDC	NC	L2P_EDB	L2P_ CLKn	L2P_ CLKp	G
Н	PERn1	VSS_ PCIE	PCIE_ VDDA	VDDC	PECLKINn	VSS	VSS	VSS	VSS	VSS	VCCO18	VCCO18	VSS	L2P_ DFRAME	VDDC	L2P_ VALID	Н
J	PERn2	VSS_ PCIE	PCIE_ VDDA	VSS	VSS	NC	VSS	VSS	VSS	VSS	VCCO18	VCCO18	VDDC	L_WR_ RDY1	L2P_ DATA3	L2P_ DATA11	J
K	PERp2	VSS_ PCIE	VSS	VDDP	VDDW	LCLK_ MODE3	VSS	VSS	VSS	VSS	VSS	VSS	NC	L_WR_ RDY0	VDDC	L2P_ DATA10	K
L	VSS	PETp2	VSS_ PCIE	LCLK_ MODE2	VDDC	VDDC	NC	VCCO18	VCCO18	VDDC	VSS	VSS	VDDC	P_RD_ D_RDY1	L2P_ DATA2	L2P_ DATA9	L
М	VTT_CD	PETn2	VSS_ PCIE	LCLK_ MODE1	LCLK_ MODE0	VDDC	VSS	VCCO18	VCCO18	VDDC	VSS	VSS	NC	P_RD_ D_RDY0	L2P_ DATA1	VDDC	M
N	PETn3	VSS_ PCIE	VDD_ PCIE	NC	VSS	RX_ ERROR	NC	VDDC	P_WR _REQ0	VDDC	P_WR _RDY1	P_WR _RDY0	PLL_ AVSS	TX_ ERROR	L2P_ DATA0	L2P_ DATA8	N
Р	РЕТр3	VSS_ PCIE	VDD_ PCIE	VSS	P2L_ DATA15	VDDC	P2L_ VALID	P2L_CLKp	P2L_RDY	P_WR _REQ1	VC_ RDY1	VC_ RDY0	VDDC	LCLK	VDDC	RSTOUT 18	Р
R	VDD_PCIE	PERp3	VSS	P2L_ DATA14	P2L_ DATA13	P2L_ DATA12	P2L_ DFRAME	P2L_CLKn	P2L_ DATA11	VREF	P2L_ DATA10	P2L_ DATA9	P2L_ DATA8	NC	VSS	LCLKn	R
Т	VSS_PCIE	PERn3	VSS_PCIE	VDDC	P2L_ DATA7	P2L_ DATA6	P2L_ DATA5	P2L_ DATA4	P2L_ DATA3	P2L_ DATA2	P2L_ DATA1	VDDC	P2L_ DATA0	PLL_ AVDD	NC	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
					3.	3V	1.8V	1.3	2V	900mV	0	V					

2.2 Pin Descriptions

Table 2-1: GN4124 Pin Descriptions

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
Global	В8	1	RSTIN	I	Global Asynchronous Reset (Active LOW). LVCMOS, 3.3V, input, hysteresis.
	C9	1	RSTOUT33	0	Reset Output; 3.3V (Active LOW). 3.3 V LVCMOS, totem-pole.
	D12	1	LB_REF_CLK_MI	1	Local Bus Reference Clock Crystal or Oscillator Input.
	C13	1	LB_REF_CLK_MO	0	Local Bus Reference Clock Crystal feedback output. Functional mode only.
	H3, J3	2	PCIE_VDDA	Р	Clock Reference Analog Supply. (1.2V)
	G5, H5	2	PECLKINp, PECLKINn	I	PCIe Reference Clock Signal. For a PCI Express add-in card, these signals should be driven by the card edge connector and AC coupled using 150nF capacitors.
	E5	1	EEPROM_EN	I	Used to report that EEPROM is present. (1 = present) LVCMOS, 3.3V, input.
					EEPROM_EN should be tied HIGH, to allow the internal GN4124 registers to load on power up from the EEPROM. Refer to Initialization from a 2-Wire EEPROM from on what is required for EEPROM boot up options.

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
Global: Test Interface	A9	1	TDI	İ	JTAG Test Data Input. LVCMOS, 3.3V, input, pull-up.
	F10	1	TMS	I	JTAG Test Mode Select Input. LVCMOS, 3.3V, input, pull-up.
	F11	1	TCK	I	JTAG Test Clock. LVCMOS, 3.3V, input.
	B12	1	TRST	I	JTAG Test Reset. LVCMOS, 3.3V, input, hysteresis, pull-up.
	A14	1	TDO	0	JTAG Test Data Output. LVTTL, 3.3V, output, 6mA, tristate.
	D6	1	SCAN_EN	I	Scan Enable (Tied LOW for normal operations). LVCMOS, 3.3V, input, pull-down.
	E6	1	TEST_EN	Ī	Test Mode Enable (Tied LOW for normal operations). LVCMOS, 3.3V, input, pull-down.
	A15	1	PLL_TEST_OUT	I/O	PLL Test Output (No connect for normal operations). LVCMOS, 3.3V, bidirectional, 4mA, tristate.
Global: 2-Wire Interface	B11	1	SCLK	I/O	Two-wire Clock port. LVCMOS, 3.3V, bidirectional, 4mA, tristate.
meriace	C12	1	SDATA	I/O	Two-wire Data port. LVCMOS, 3.3V, bidirectional, 4mA, tristate.
Global: General Purpose Interface	A6, B7, B6, C7, F7, C8, A7, B9, A10, A11, E11, A13, D9, C10, D11, E12	16	GPIO[15:0]	I/O	General Purpose Input/Output. LVCMOS, 3.3V, bidirectional, 4mA, tristate.
Global: Debug Interface	A5, B5, C5, E7, D7, B4, C6, A4	8	DBG[7:0]	I	Debug Bus Port (Tied LOW for normal operations). LVCMOS, 3.3V, input, pull-down.

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
Global: Serial Programming	A8	1	SPRI_CLK	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
Interface	B10	1	SPRI_DATAOUT	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
	C11	1	SPRI_CONFIG	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
	A12	1	SPRI_DONE	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
	B13	1	SPRI_XI_SWAP	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
	B14	1	SPRI_STATUS	I/O	Serial Programming Interface (FPGA Configuration Loader). LVCMOS, 3.3V, bidirectional, 12mA, tristate.
PCI Express Link: PCIe x4 PHY interface	A1, A3, C2, D2, E3, F3, G2, H2, J2, K2, L3, M3, N2, P2, T1, T3	16	VSS_PCIE	G	PHY VSS.
	B1, C3, D3, N3, P3, R1	6	VDD_PCIE	Р	PHY VDD. 1.2V (Core)
	G3	1	VDDAUX	Р	PHY VDDAUX. 1.2V
	F1	1	VTT_AB	Р	PCIe PHY transmit termination lanes A/B. Driven to voltage VTT. 1.5V See Table 3-6.
	M1	1	VTT_CD	Р	PCIe PHY transmit termination lanes C/D. Driven to voltage VTT. 1.5V See Table 3-6.
PCI Express Link: PCIe Transmit	N1, M2, E2, D1	4	PETn[3:0]	0	PCIe Transmit -Bus Lane A. CML
[Output from the device]	P1, L2, F2, C1	4	PETp[3:0]	0	PCIe Transmit +Bus Lane A. CML

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
PCI Express Link: PCIe Receive [Input to the device]	T2, J1, H1, A2	4	PERn[3:0]	I	PCIe Receive -Bus Lane A. CML Note: PERp[3:0] / PERn[3:0] each receiver lane can be connected using either the indicated polarity, or inverted polarity. Inverted polarity may be chosen in order to simplify the PCB layout by avoiding signal crossover and additional PCB vias. The GN4124 will automatically detect and compensate for polarity inversion during link training.
	R2, K1, G1, B2	4	PERp[3:0]	I	PCIe Receive +Bus Lane A. CML
Local Bus	P14, R16	2	LCLK, LCLKn	0	Local Bus Clock. SSTL, 1.8V, differential
	K6, L4, M4, M5	4	LCLK_MODE[3:0]	I	Selects the clock mode. LVCMOS, 3.3V, input, pull-down.
	P16	1	RSTOUT18	0	Reset Output; 1.8V (Active LOW). CMOS, 1.8V, output
Local Bus: PCIe to Local [Inbound Data]	P9	1	P2L_RDY	I	Rx Buffer Full Flag. SSTL, 1.8V, input, with ODT.
[334.16.24.6]	P5, R4, R5, R6, R9, R11, R12, R13, T5, T6, T7, T8, T9, T10, T11, T13	16	P2L_DATA[15:0]	0	Parallel Receive Data. SSTL, 1.8V, output
	R7	1	P2L_DFRAME	0	Receive Frame. SSTL, 1.8V, output
	P7	1	P2L_VALID	0	Receive Data Valid. SSTL, 1.8V, output
	P8, R8	2	P2L_CLKp, P2L_CLKn	0	Receiver Source Synchronous Clock. SSTL, 1.8V, output, differential

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
Local Bus: Inbound Buffer Request/Status	P10, N9	2	P_WR_REQ[1:0]	0	PCIe Write Request. SSTL, 1.8V, output
Requestistatus	N11, N12	2	P_WR_RDY[1:0]	I	PCIe Write Ready. SSTL, 1.8V, input, with ODT.
	N6	1	RX_ERROR	I	Receive Error. SSTL, 1.8V, input, with ODT.
	P11, P12	2	VC_RDY[1:0]	0	Virtual Channel Ready Status. This provides a VC_RDY output to indicate the DL_UP ¹ status of the Virtual Channel. This can be used to provide a synchronous reset to the external application in the event one of the Virtual Channels goes down e.g. hot reset initiated by PCIe host. SSTL, 1.8V, output
Local Bus: Local PCIe [Outbound Data]	B16, C16, E16, F16, J16, K16, L16, N16, C15, D15, E15, F15, J15, L15, M15, N15	16	L2P_DATA[15:0]	I	Parallel Transmit Data. SSTL, 1.8V, input, with ODT.
	H14	1	L2P_DFRAME	I	Transmit Data Frame. SSTL, 1.8V, input, with ODT.
	H16	1	L2P_VALID	I	Transmit Data Valid. SSTL, 1.8V, input, with ODT.
	G14	1	L2P_EDB	I	End-of-Packet Bad Flag. When a packet is considered bad and is terminated with EDB. SSTL, 1.8V, input, with ODT.
	G16, G15	2	L2P_CLKp, L2P_CLKn	I	Transmitter Source Synchronous Clock. SSTL, 1.8V, input, differential, with ODT.
Local Bus: Outbound	F14	1	L2P_RDY	0	Tx Buffer Full Flag. SSTL, 1.8V, output
Buffer Status	J14, K14	2	L_WR_RDY[1:0]	0	Local-to-PCIe Write. SSTL, 1.8V, output
	L14, M14	2	P_RD_D_RDY[1:0]	0	PCIe-to-Local Read Response Data Ready. SSTL, 1.8V, output
	N14	1	TX_ERROR	0	Transmit Error. SSTL, 1.8V, output

Group	Pin No.	No. of Pins	Pin Name	I/O	Description
Power	F5, K5	2	VDDW	Р	3.3V
	R10	1	VREF	Р	900mV reference voltage for SSTL I/O
	T14	1	PLL_AVDD	Р	1.2V PLL supply voltage
	D5, D8, D13, D16, E10, E13, F6, F12, F13, G12, H4, H15, J13, K15, L5, L6, L10, L13, M6, M10, M16, N8, N10, P6, P13, P15, T4, T12	28	VDDC	P	1.2V core power
	E1, K4	2	VDDP	Р	3.3V
	H11, H12, J11, J12, L8, L9, M8, M9	8	VCCO18	Р	Power for 1.8V I/O
	E8, E9, F8, F9	4	VCCO33	Р	Power for 3.3V I/O
Ground	N13	1	PLL_AVSS	G	PLL Ground. This pin is internally connected to VSS and, for noise isolation, should not be connected to VSS externally. Refer to the Gullwing RDK schematics and PCB layout for proper implementation.
	A16, B15, C4, C14, D4, E4, G4, G6, G7, G8, G9, G10, G11, H6, H7, H8, H9, H10, H13, J4, J5, J7, J8, J9, J10, K3, K7, K8, K9, K10, K11, K12, L1, L11, L12, M7, M11, M12, N5, P4, R3, R15, T16	43	VSS	G	Ground.
No Connect	B3, D10, D14, E14, F4, G13, J6, K13, L7, M13, N4, N7, R14, T15	14	NC	_	No Connect.

^{1.} Data Link Layer indicates that a connection with the upstream devices has been established.

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3-1: Absolute Maximum Ratings

Parameter	Value
Core Supply Voltage	-0.5V to +1.8 VDC
SSTL IO Supply Voltage	-0.5V to +2.5 V _{DC}
LVCMOS IO Supply Voltage	-0.5V to +4.6 V _{DC}
Input ESD Voltage (HBM)	2kV
Storage Temperature Range	-50°C < T _s < 125°C
Solder Reflow Temperature	260°C

3.2 Operating Conditions

Table 3-2: Operating Conditions

All electrical characteristics are valid over the range of these operating conditions, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Core Supply Voltage on pins VDDC, VDD_PCIE, VDDAUX, PLL_AVDD, PCIE_VDDA	V_{CORE}	-	1.14	1.2	1.26	V	±5%
SSTL IO Supply Voltage on pins VCCO18	V _{VCCO18}	-	1.71	1.8	1.89	V	±5%
LVCMOS IO and 3.3V Core Supply Voltage: pins VCCO33, VDDW, VDDP	V _{VCCO33}	-	3.0	3.3	3.6	V	±10%
Operating Temperature Range	T _A	Ambient	0	25	85	°C	

3.3 DC Electrical Characteristics

Table 3-3: DC Electrical Characteristics

Power and current limits listed have been derived from design and characteristics data. They are not 100% tested in production.

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Power Consumption	P _D	PCIe x4, LCLK=200MHz	_	650	950	mW	1
		PCIe x4, LCLK=100MHz	-	600	-	mW	2
		PCIe x1, LCLK=100MHz	-	475	_	mW	3
Total Core Supply Current on pins VDDC, VDD_PCIE, VDDAUX, PLL_AVDD, PCIE_VDDA	I _{CORE}	-	-	110 ⁴	– (See Note ⁵)	mA	-
SSTL IO Supply Current	I _{VCCO18}	-	-	340 ⁶	- (See Note 5)	mA	_
LVCMOS IO and 3.3V Core Supply Current: pins VCCO33, VDDW, VDDP	I _{VCCО33}	-	-	90 ⁷	- (See Note 5.)	mA	-

- 1. Data is based on an application circuit equivalent to that used on the GN4124 RDK board (Gullwing), typical operating conditions, PCle negotiated to 4 lanes, default PCle PHY settings, 200MHz local bus operation, and with concurrent data traffic at 75% bus utilization. Doesn't include power dissipated by components outside of the GN4124.
- 2. See Note 1. Typical operating conditions, 100MHz local bus operation.
- 3. See Note 1. Typical operating conditions, 100MHz local bus operation, PCIe negotiated to 1 lane.
- 4. This information is intended to guide power supply design. Data is based on an application circuit equivalent to that used on the GN4124 RDK board (Gullwing), typical operating conditions, 200MHz local bus operation, and with concurrent data traffic at 75% bus utilization.
- 5. Maximum supply current will vary greatly depending on the application circuit and device usage. A specific application's maximum current can be be predicted by measuring current under high temperature, high supply and full load conditions. To this resultant number, the following factors needed to be added:
 - +25% for I_{CORE}
 - +35% for I_{VCCO18}
- +25% for I_{VCCO33}
- 6. See Note 4. Based on use of 22-ohm serial termination and 51-ohm parallel termination in the application circuit.
- 7. See Note 4. Also includes current draw from an LDO used to power VTT_AB and VTT_CD.

Table 3-4: DC Electrical Characteristics for LVCMOS Buffers

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
High-level input voltage	V _{IH}	-	2	-	-	V	_
Low-level input voltage	VIL	-	_	_	0.8	V	_
Input leakage current	IL	-	-	-	±5	μΑ	_
High-level output voltage	V _{OH}	IOH = -100 μA	2.8	_	-	V	_
Low-level output voltage	VOL	IOL = 100 μA	_	=	0.2	V	-

Table 3-5: DC Electrical Characteristics for SSTL Buffers

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
VREF input reference voltage	V _{REF}	-	833	900	969	mV	1
SSTL termination voltage	V _{TT}	-	V _{REF} -40	V _{REF}	V _{REF} +40	mV	2
High-level input voltage (DC)	V _{IH}	_	V _{REF} +125	-	V _{VCCO18} + 300	mV	_
Low-level input voltage (DC)	V_{IL}	-	-300	-	V _{REF} -125	mV	_
High-level input voltage (AC)	V _{IH}	-	V _{REF} +250	-	_	mV	-
Low-level input voltage (AC)	V_{IL}	-	-	-	V _{REF} -250	mV	-

^{1.} Typically the value of VREF is expected to be 50% * VDDQ of the transmitting device. Peak to peak AC noise on VREF may not exceed +/- 2% of VREF.

3.4 PCI Express Electrical Characteristics

3.4.1 PCI Express Transmitter Characteristics

Table 3-6: Transmitter Characteristics

Symbol	Description	Min	Typical	Max	Unit
Voltage Parameters					
V _{TX-DIFF} ¹	Output voltage compliance @ typica	l swing			
	V _{TX-DIFFp} (peak-to-peak, single ended)	400	500	600	mV
	V _{TX-DIFFpp} (peak-to-peak, differential)	800	1000	1200	mV
V _{TT}	Transmitter termination voltage	1.2	1.5	1.89	V
V _{OL}	Low-level output voltage	-	V _{TT} - 1.5 * V _{TX-DIFFp}	_	V

^{2.} The termination voltage VTT should track the reference voltage VREF.

Symbol	Description	Min	Typical	Max	Unit
V _{OH}	High-level output voltage	-	V _{TT} - 0.5 * V _{TX-DIFFp}	-	V
V _{TX-DC-CM}	Transmit common-mode voltage	0	V _{TT} - V _{TX-DIFFp}	3.6	V
V _{TX-CM-DCACTIVE} -	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle.	-	-	100	mV
V _{TX-DE-RATIO}	De-emphasized differential output voltage	0	-3.35	-7.96	dB ²
V _{TX-IDLE-DIFFp}	Electric Idle differential peak voltage	_	-	20	mV
V _{TX-RCV-DETECT}	Voltage change during Receive Detection	_	-	600	mV
RL _{TX-DIFF}	Transmitter Differential Return loss	10	-	-	dB
RL _{TX-CM}	Transmitter Common Mode Return loss	6	-	-	dB
Z _{OSE}	Single-ended output impedance	40	50	60	Ω
Z _{TX-DIFF-DC}	DC Differential TX Impedance	80	100	120	Ω
T _{TX-RISE} , T _{TX-FALL}	Rise / Fall time of TxP, TxN outputs	.125	-		UI ³
Jitter Parameters					
UI	Unit Interval	399.88	400	400.12	ps ⁴
T _{TX-MAX-JITTER}	Transmitter total jitter (peak-to-peak)	_	-	0.30 ⁵	UI
T _{TX-EYE}	Minimum TX Eye Width (1 - T _{TX-MAX-JITTER})	0.70	-	-	UI
T _{TX-EYE-MEDIAN-to-MAX-} JITTER	Maximum time between the jitter median and maximum deviation from the median	-	-	0.15	UI
Timing Parameters					
L _{TX-SKEW}	Transmitter data skew between any 2 lanes	0	-	2UI + 200ps	ps
T _{TX-IDLE-SET-TO-IDLE}	Maximum time to transition to a valid electrical idle after sending an Electrical Idle ordered set	-	4	6	ns
T _{EIExit}	Time to exit Electrical Idle (L0s) state into L0	-	12	16	ns

- 1. Measured with Vtt = 1.2V, PHY_CONTROL register bits HIDRV='0', LODRV='0' and DTX="0000"(1x).
- 2. The de-emphasis ratio is determined through the DEQ bits of the PHY_CONTROL register inside the GN4124. Typical value is based on recommended setting of the PHY_CONTROL register.
- 3. As measured between 20% and 80% points.
- 4. UI does not account for SSC dictated variations.
- 5. Measured using PCI Express Compliance Pattern.

Figure 3-1: Typical Transition Signal Eye, De-emphasis Disabled, Default Drive Setting

The eye diagram is generated from SIGtest Version 2.1 available from the PCI Special Interest Group.

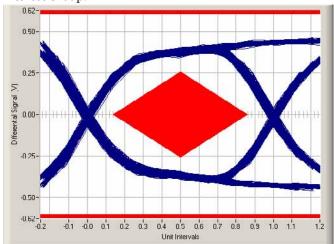
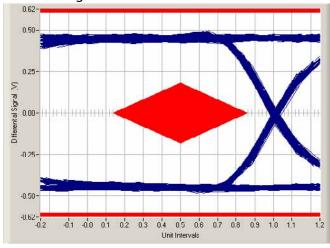



Figure 3-2: Typical Non-Transition Signal Eye, De-emphasis Disabled, Default Drive Setting

3.4.2 PCI Express Receiver Characteristics

Table 3-7: PCI Express Receiver Characteristics

Symbol	Description	Min	Typical	Max	Unit
Voltage Parameters					
V _{RX-DIFFp-p}	Differential input voltage (peak-to-peak)	170	-	1200	mV
V _{RX-IDLE-DET-DIFFp-p}	Differential input threshold voltage (peak-to-peak) to assert TxIdleDetect output	65	-	235	mV
V _{RX-CM-AC}	Receiver common-mode voltage for AC-coupling		0	150	mV
T _{RX-RISE} , T _{RX-FALL}	Rise time / Fall time of RxP, RxN inputs	_	_	160	ps
Z _{RX-DIFF-DC}	Differential input impedance (DC)	80	100	120	Ω
Z _{RX-COM-DC}	Single-ended input impedance	40	50	60	Ω
Z _{RX-COM-INITIAL-DC}	Initial input common mode impedance (DC)	5	50	60	Ω
Z _{RX-COM-HIGH-IMP-DC}	Powered down input common mode impedance (DC)	200k	_	-	Ω
RL _{RX-DIFF}	Receiver Differential Return Loss ¹	10	-	-	dB
R _{LRX-CM}	Receiver Common Mode Return Loss	6	-	-	dB
Jitter Parameters					
T _{RX-MAX-JITTER}	Receiver maximum total jitter tolerance	0.65	-	-	UI
T _{RX-EYE}	Minimum Receiver Eye Width	0.35	-	-	UI
T _{RX-EYE-MEDIAN-to-MAX-} JITTER	Maximum time between jitter median and max deviation from median	-	-	0.325	UI
Timing Parameters					
T _{RX-SKEW}	Maximum skew across all 4 lanes of the link	-	-	20	ns
T_{BDDIy}	Beacon-Activity on channel to detection of Beacon ²	33	-	100	ns
T _{RX-IDLE_ENTER}	Delay from detection of Electrical Idle condition on the channel to assertion of TxIdleDetect output	-	10	20	ns
T _{RX-IDLE_EXIT}	Delay from detection of L0s to L0 transition to de-assertion of TxIdleDetect output	-	5	10	ns

^{1.} Over a frequency range of 50MHz to 1.25GHz.

^{2.} This is a function of beacon frequency.

Table 3-8: Reference Clock (PECLKINn) Requirements

Symbol	Description	Min	Typical	Max	Unit
V _{IL-RC}	Low-level CML/CMOS input voltage	0	_	V _{DD} - 0.5	V
V _{IH-RC}	High-level CML/CMOS input voltage	_	V_{DD}		V
F _{RefClk}	Clock frequency range	99.5	100	100.03	MHz ¹
D.C. _{RefClk}	Duty cycle	40	50	60	%
T _{Skew-Ref}	Skew between PECLKINp/PECLKINn inputs	-	-	0.05	RCUI
TCCJITTER	Cycle to Cycle jitter	-	-	150	ps
T _{RRef} ,T _{FRef}	Rise/Fall time of PECLKINp/PECLKINn inputs	-	0.2	0.25	RCUI
PPM	PPM difference between reference clocks on different ends of a link	-300	-	+300	PPM

^{1.} Includes 0 to -0.5% spread spectrum clock range.

3.4.3 Local Bus Timing

Figure 3-3 illustrates the timing relationships of the three local bus clock domains.

Figure 3-3: Local Bus Timing

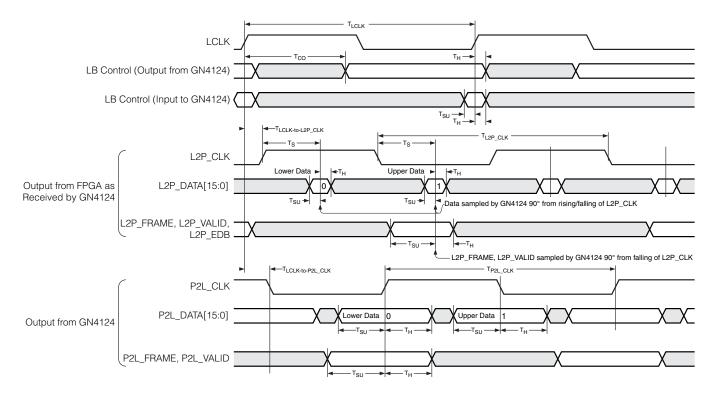


Table 3-9: Local Bus Signal Timing for Single Data Rate SSTL Over Specified Operating Conditions (TARGET SPECIFICATION)

Symbol	Description	Min	Max	Units
T _{LCLK}	LCLK Cycle Time	5	10	ns
T _{CO}	Clock to output delay for local bus control signals	0.7	5.0	ns ¹
T _{SU}	Required input set-up time to LCLK for local bus control inputs	-	1.0 ²	ns
T _H	Required input hold time from LCLK for local bus control inputs	-	0.7	ns

^{1.} Local bus control signals received by an attached FPGA should be treated as asynchronous.

Table 3-10: Local Bus Timing for Source Synchronous SSTL Input Signals Over Specified Operating Conditions (TARGET SPECIFICATION)

Input signals include L2P_CLK, L2P_DATA(15:0), L2P_DFRAME, and L2P_VALID.

Symbol	Description	Min	Max	Units
T _{L2P_CLK}	L2P_CLK Cycle Time or Unit Interval (UI)	T _{LCLK}		ns
IJT _{L2P_CLK}	L2P_CLK input jitter tolerance (cycle-to-cycle)	_	100	ps
T _{L2P_CLK_LOCK}	L2P_CLK input lock time	-	1380	cycles
T _{LCLK-to-L2P_CLK}	Delay from LCLK to L2P_CLK	0	T _{LCLK}	ns
T _S	Sample point for data relative to L2P_CLK (rising and falling)	L2P_CLK +90°		
T _{SU} (L2P_DATA)	Required input set-up time to L2P_CLK+T _S (rising and falling)	-	400	ps
T _H (L2P_DATA)	Required input hold time from L2P_CLK+T _S (rising and falling)	-	400	ps

Table 3-11: Local Bus Timing for Source Synchronous SSTL Output Signals Over Specified Operating Conditions (TARGET SPECIFICATION)

Output signals include P2L_CLK, P2L_DATA(15:0), P2L_DFRAME, and P2L_VALID.

Symbol	Description	Min	Max	Units
T _{P2L_CLK}	P2L_CLK Cycle Time or Unit Interval (UI)	T _{LCLK}		ns
T _{LCLK-to-P2L_CLK}	Delay from LCLK to P2L_CLK	T _{LCLK} /2 - 1.2	T _{LCLK} /2 +1.2	ns
T _{SU} (P2L_DATA)	Output set-up time to P2L_CLK (rising and falling)	1200	_	ps
T _H (P2L_DATA)	Output hold time from P2L_CLK (rising and falling)	400	_	ps
T _{SKEW}	Skew between P2L_DATA lanes	_	300	ps

^{2.} Local bus control inputs are synchronized by the GN4124. Failure to meet setup time will simply delay the cycle in which the change is recognized.

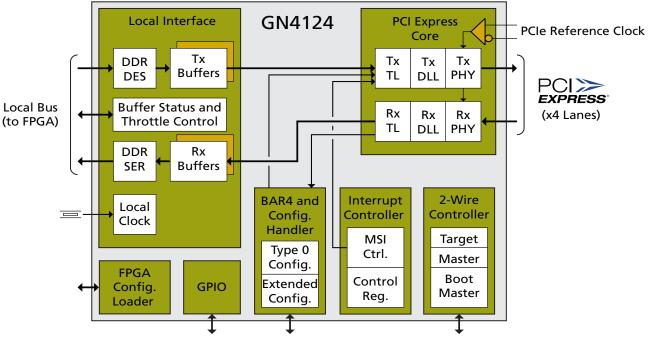
3.4.4 Local Clocks' Pins Settings

There are 3 local clocks used by the GN4124 and attached FPGA. They are:

- LCLK/LCLKn: The primary clock generated by the GN4124 and driven to the FPGA
 in the form of a differential SSTL output.
- P2L_CLKp/n: The source synchronous clock used by the GN4124 to communicate data to the FPGA. It is derived from the same source as LCLK/LCLKn.
- L2P_CLKp/n: The source synchronous clock generated by the attached FPFA to communicate data to the GN4124. It is derived by the FPGA from LCLK/LCLKn.

The local clock LCLK/LCLKn may be derived from either the PCI Express clock or a low frequency crystal oscillator. The options are described in Table 3-12.

Table 3-12: GN4124 Clocks' Pins Settings


Signal	Description
LCLK_MODE[2]	Controls PLL Bypass. '0' = LCLK is generated by the PLL, which is configurable. This is
	recommended for low and predictable LCLK clock jitter. '1' = LCLK is driven by 125MHz clock generated from the PCI Express link.
LCLK_MODE[1]	Resets the PLL test clock divider. '0' = Resets the PLL test clock divider, so that PLL_TEST_OUT = '0'. '1' = PLL_TEST_OUT pin outputs a clock with a frequency of the PLL clock divided by 1024. This is used for test purposes.
LCLK_MODE[0]	Selects the source for the LCLK PLL. '0' = LB_REF_CLK oscillator (20-40MHz). This is recommended for low and predictable LCLK clock jitter. '1' = 125MHz clock generated from the PCI Express link.

4. Overview

A block diagram of the GN4124 is depicted in Figure 4-1.

Figure 4-1: GN4124 Block Diagram

Each of the internal blocks is described in detail in the GN412x PCI Express Family Reference Manual. They are:

- The PCI Express link is described in PCI Express Link section of the GN412x PCI Express Family Reference Manual. This includes a description of the PCI Express related configuration registers.
- The Local bus is described in Local Bus Interface section of the GN412x PCI Express Family Reference Manual.
- The interrupt controller is described in Interrupt Control Unit section of the GN412x PCI Express Family Reference Manual.
- The boot master mode of the 2-wire controller is described in Initialization from a 2-Wire EEPROM section of the GN412x PCI Express Family Reference Manual.
- General purpose master/target mode of the 2-wire controller is described in 2-Wire Interface section of the GN412x PCI Express Family Reference Manual.
- General purpose IO are described in General Purpose IO Block section of the GN412x PCI Express Family Reference Manual.
- Details of all the internal registers and their respective register bit fields are described in Internal Registers section of the GN412x PCI Express Family Reference Manual.

