imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GP1FA551TZ/ GP1FA551RZ

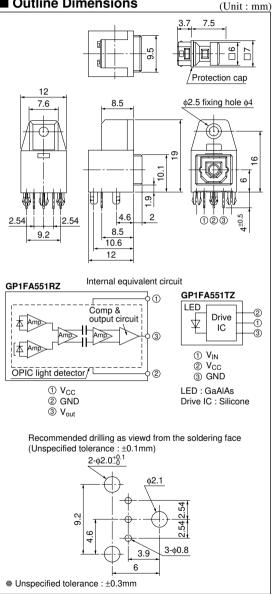
Features

1. High speed transmission of high quality audio signal such as DVD players and AV amplifiers.

Signal transmission speed:MAX.13.2Mbps (NRZ signal)

- 2. Uni-directional data transmission using plastic optical fiber cable
- 3. The optical receiver can be directly connectable the TTL, due to the use of OPIC

Applications


- 1. DVD players
- 2. CD players
- 3. MD players

Absolute Maximu	Absolute Maximum Ratings (Ta=25°C)						
Parameter	Symbol	Rating	Unit				
Supply voltage	Vcc	-0.5 to +7.0	V				
Output current	Іон	2 (Source current)					
(GP1FA551RZ)	Iol	10 (Sink current)	mA				
Input voltage (GP1FA551TZ)	VIN	-0.5 to Vcc +0.5	V				
Operating temperature	Topr	-20 to +70	°C				
Storage temperature	Tstg	-30 to +80	°C				
*1 Soldering temperature	Tsol	260	°C				
*1 Ean 50 (2 times on loss)							

*1 For 5s (2 times or less)

High Transmission Speed Type Fiber Optic Transmitter/Receiver

Outline Dimensions

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

GP1FA551TZ/GP1FA551RZ

SHARP

■ Recommended Operating Conditions (GP1FA551TZ) (Ta=25°C)							
Parameter	Symbol	MIN.	TYP.	MAX.	Unit		
Operating supply voltage	Vcc	4.75	5.0	5.25	V		
*2 Operating transfer rate	Т	-	-	13.2	Mbps		

*2 NRZ signal, duty 50%

■ Recommended Operating Conditions (GP1FA551RZ) (Ta=25°C)

•	0			,	. ,
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	Vcc	4.75	5.0	5.25	V
*3*4 Operating transfer rate	Т	0.1	-	13.2	Mbps
*5 Input optical power level	Pc	-24.0	-	-14.5	dBm

*3 The above operating transfer rate is the value when NRZ signal, "0101.." continuous signal of duty 50% is transmitted *4 The output (H/L level) of **GP1FA551RZ** are not fixed constantly when it receivers the modulating light (including DC

light, no input light) less than 0.1Mbps

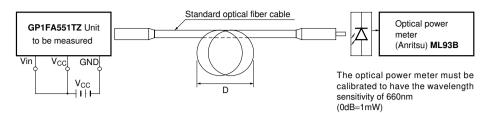
*5 Peak emission value

■ Electro-optical Characteristics (GP1FA551TZ)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	$\lambda_{\rm P}$	_	630	660	690	nm
Optical output coupling with fiber	Pc	Refer to Fig.1	-21	-18	-15	dBm
Dissipation current	Icc	Refer to Fig.2	-	8	13	mA
High level input voltage	VIH	Refer to Fig.2	2.1	-	-	V
Low level input voltage	VIL	Refer to Fig.2	-	-	0.8	V
Low→High delay time	t _{pLH}	Refer to Fig.3	-	-	180	ns
High→Low delay time	t _{pHL}	Refer to Fig.3	-	-	180	ns
Pulse width distortion	Δt_w	Refer to Fig.3	-15	-	+15	ns
Jitter	Δt_j	Refer to Fig.3	-	1	15	ns

■ Electro-optical Characteristics (GP1FA551RZ)

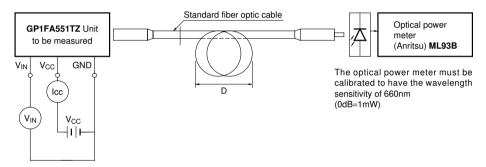
(Ta=25°C, Vcc=5V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitivity wavelength	λ_p	_	-	700	-	nm
Dissipation current	Icc	Refer to Fig.4	-	15	25	mA
High level output voltage	Voh	Refer to Fig.5	2.7	3.5	-	V
Low level output voltage	Vol	Refer to Fig.5	-	0.2	0.4	V
Rise time	tr	Refer to Fig.5	-	17	23	ns
Fall time	tr	Refer to Fig.5	_	7	15	ns
Low→High delay time	tpLH	Refer to Fig.5	-	-	180	ns
High→Low delay time	tpHL	Refer to Fig.5	-	-	180	ns
Pulse width distortion	Δt_w	Refer to Fig.5	-20	-	+20	ns
Jitter		Refer to Fig.6, Pc=-14.5dBm	-	1	15	ns
Jitter	Δt_j	Refer to Fig.6, Pc=-24dBm	-	-	15	ns

Mechanical Characteristics

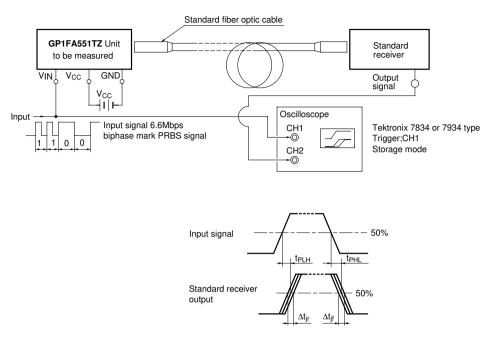
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, withdrawal force	_	Initial value when a GP1C331 in used.	6	-	40	Ν

(Ta=25°C, Vcc=5V)


Fig.1 Measuring Method of Optical Output Coupling with Fiber

Note (1) V_{CC}; 5.0V (State of operating)

(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D=10cm or more (The standard fiber optic cable will be specified elsewhere.)

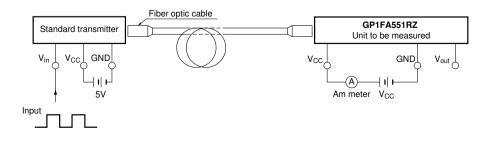

Fig.2 Measuring Method of Intput Voltage and Supply Current

Conditions	Judgement method
V _{IN} =2.1V or more	−21≤Pc≤−15dBm, Icc=13mA or less
V _{IN} =0.8V or less	Pc≤-36dBm, Icc=13mA or less

Note $V_{CC}=5.0V$ (State of operating)

Fig.3 Measuring Method of Pulse Response and Jitter

Parameter	Symbol	Conditions
Low→High delay time	t pLH	Refer to the above mentioned prescription
High→Low delay time	t _{pHL}	Refer to the above mentioned prescription
Pulse width distortion	Δt_w	$\Delta t_w = t_{pHL} - t_{pHL}$
Low→High jitter	Δtjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low jitter	Δt_{jf}	Set the trigger on the fall of input signal to measure the jitter of the fall of output


Notes (1) The waveform write time shall be 4s. But do not allow the waveform to be distorted by increasing the brightness too much

(2) V_{CC}=5.0V (State of operating)

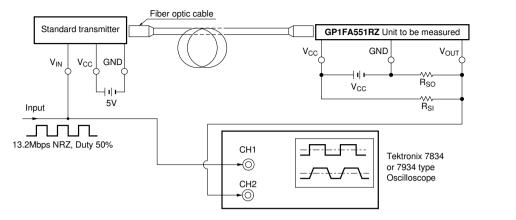

(3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF

Fig.4 Supply Current

Inpu	Measuring method	
Supply voltage	Vcc=5.0V	
Fiber coupling light output	Pc=-14.5dBm	Measured on an ammeter
Standard transmitter input signal	13.2Mbps NRZ, Duty 50% or 6.6Mbps biphase mark PRBS signal	(DC average amperage)

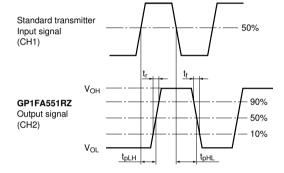
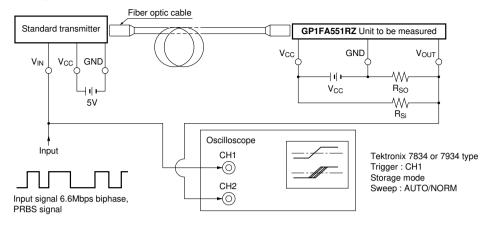


Fig.5 Measuring Method of Output Voltage and Pulse Response

Test item


Test item	Symbol
Low \rightarrow High pulse delay time	t _{pLH}
High \rightarrow Low pulse delay time	t _{pHL}
Rise time	tr
Fall time	tr
Pulse width distortion $\Delta t_w = t_{pHL} - t_{pLH}$	$\Delta t_{ m w}$
High level output voltage	Voh
Low level output voltage	Vol

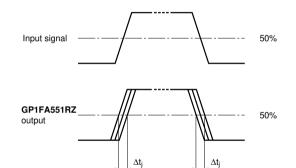
Notes (1) V_{CC}=5.0V (State of operating) (2) The fiber coupling light output set at -14.5dBm/-24dBm (3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF

(4) R₅₁, R₅₀:Standard load resistance (R₅₁:3.3kΩ, R₅₀:2.2kΩ) (5) The output (H/L level) of **GP1FA551RZ** are not fixed constantly when it receives the modulating light (including DC light, no input light) less than 0.1Mbps

Fig.6 Measuring Method of Jitter

Test item

Т	'est item	Symbol	Test condition
	Jitter	Δt_{j}	Set the trigger on the rise of input signal to measure the jitter of the rise of output
	Jitter	Δt_{j}	Set the trigger on the fall of input signal to measure the jitter of the fall of output


 Notes
 (1) The fiber coupling light output set at -14.5dBm/-24dBm

 (2) R_{SI}, R_{SO}:Standard load resistance (R_{SI}:3.3kΩ, R_{SO}:2.2kΩ)

(3) The waveform write time shall be 3s. But do not allow the waveform to

be distorted by increasing the brightness too much

(4) V_{CC} =5.0V (State of operating) (5) The probe for the oscilloscope must be more than 1M Ω and less than 10pF

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.