imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Features

- Low gate charge
- 100% avalanche tested
- Improved dv/dt capability
- RoHS compliant
- Halogen free package
- JEDEC Qualification

GP1M008A080H
GP1M008A080FH

	N-channel MOSFET				
BV_{DSS}	I _D	R _{DS(on)}			
800V	8A	< 1.4Ω			

Device	Package	Marking	Remark
GP1M008A080H	TO-220	GP1M008A080H	RoHS
GP1M008A080FH	TO-220F	GP1M008A080FH	Halogen Free

Absolute Maximum Ratings

Parameter		Symbol	GP1M00A080H	GP1M008A080FH	Unit
Drain-Source Voltage		V _{DSS}	800		V
Gate-Source Voltage		V _{GS}	±30		V
Continuous Droin Current	T _C = 25 °C		8	8 *	А
Continuous Drain Current	T _C = 100 °C		4.9	4.9 *	A
Pulsed Drain Current (Note 1)		I _{DM}	32	32 *	A
Single Pulse Avalanche Energy (Note 2)		E _{AS}	201		mJ
Repetitive Avalanche Current (Note 1)		I _{AR}	8		A
Repetitive Avalanche Energy (No	Repetitive Avalanche Energy (Note 1)		25		mJ
D D H	T _C = 25 °C		250	40.3	W
Power Dissipation	Derate above 25 °C	P _D	2	0.32	W/°C
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5		V/ns
Operating Junction and Storage Temperature Range		T _J , T _{STG}	-55~150		°C
Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		TL	300		°C

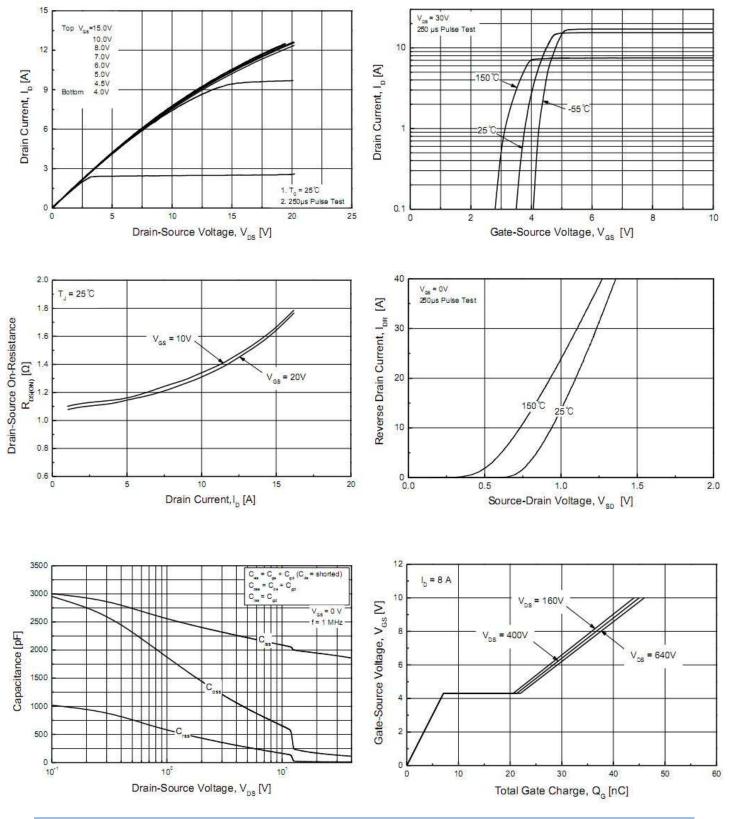
* Limited only by maximum junction temperature

Thermal Characteristics

Parameter	Symbol	GP1M008A080H	GP1M008A080FH	Unit
Maximum Thermal resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	0.5	3.1	°C/W
Maximum Thermal resistance, Junction-to-Ambient	$R_{ ext{ heta}JA}$	62.5	62.5	°C/W

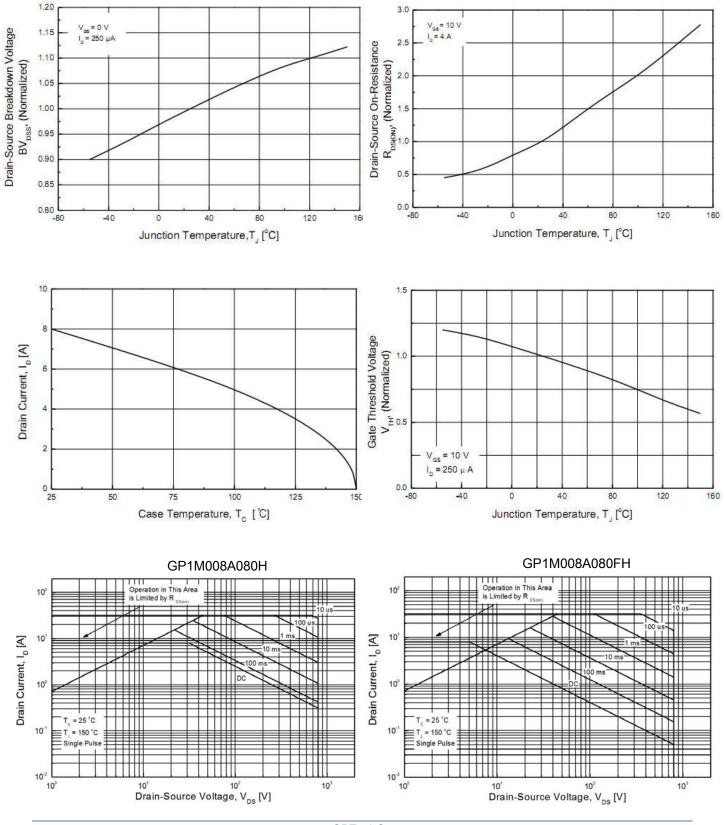
GP1M008A080H GP1M008A080FH

Electrical Characteristics : T_c=25°C, unless otherwise noted

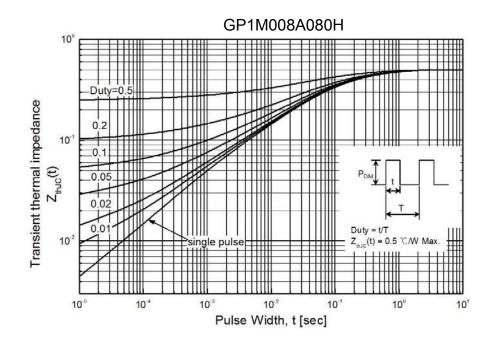

Parameter	Symbol	Test condition	Min	Тур	Max	Units
OFF						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	800			V
		V _{DS} = 800 V, V _{GS} = 0 V			1	μA
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 640 V, T _C = 125°C			10	μA
Forward Gate-Source Leakage Current	I _{GSSF}	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
Reverse Gate-Source Leakage Current	I _{GSSR}	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
ON						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2		4	V
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 4 A		1.1	1.4	Ω
Forward Transconductance (Note 4)	g fs	V _{DS} = 30 V, I _D = 4 A		7		S
DYNAMIC						
Input Capacitance	C _{iss}	$V_{DS} = 25 V, V_{GS} = 0 V,$		1921		pF
Output Capacitance	C _{oss}	f = 1.0 MHz		146		pF
Reverse Transfer Capacitance	C _{rss}			12		pF
SWITCHING						
Turn-On Delay Time (Note 4,5)	t _{d(on)}	V _{DD} = 400 V, I _D = 8 A,		31		ns
Turn-On Rise Time (Note 4,5)	t _r	R _G = 25 Ω		30		ns
Turn-Off Delay Time (Note 4,5)	t _{d(off)}			172		ns
Turn-Off Fall Time (Note 4,5)	t _f			37		ns
Total Gate Charge (Note 4,5)	Qg	V _{DS} = 640 V, I _D = 8 A,		46		nC
Gate-Source Charge (Note 4,5)	Q _{gs}	V _{GS} = 10 V		7		nC
Gate-Drain Charge (Note 4,5)	Q_gd			15		nC
SOURCE DRAIN DIODE						
Maximum Continuous Drain-Source Diode Forward Current	I _S				8	A
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				32	Α
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _S = 8 A			1.5	V
Reverse Recovery Time (Note 4)	t _{rr}	V _{GS} = 0 V, I _S = 8 A		479		ns
Reverse Recovery Charge (Note 4)	Q _{rr}	dl _F / dt = 100 A/µs		5.5		μC

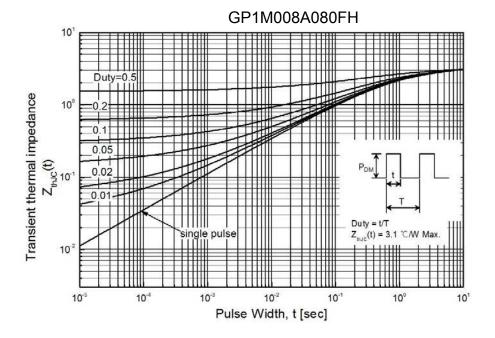
Note :

1. Repeated rating : Pulse width limited by safe operating area 2. L = 5.9mH, $I_{AS} = 8A$, $V_{DD} = 50V$, $R_G = 25\Omega$, Starting $T_J = 25 \degree C$ 3. $I_{SD} \le 8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DS}$, Starting $T_J = 25 \degree C$ 4. Pulse Test :Pulse width $\le 300\mu s$, Duty Cycle $\le 2\%$ 5. Essentially Independent of Operating Temperature Typical Characteristics

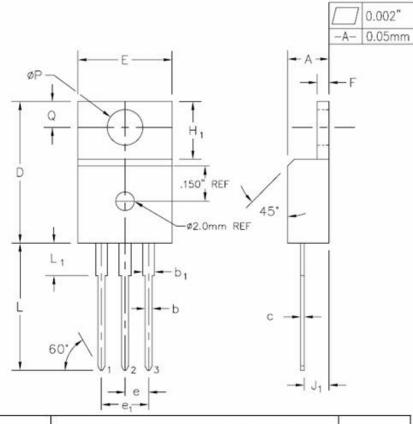


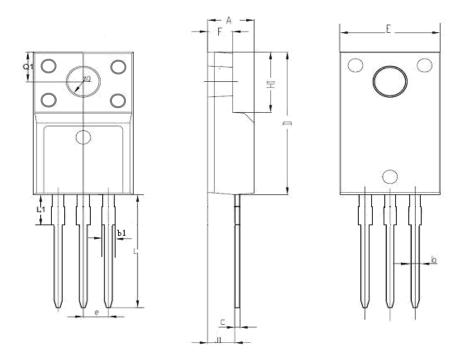
GP1M008A080H GP1M008A080FH





GP1M008A080H GP1M008A080FH





SYMBOL	INCHES		MILLIN	NOTEC	
	MIN.	MAX.	MIN.	MAX.	NOTES
A	0.170	0.180	4.32	4.57	-
b	0.028	0.036	0.71	0.91	
b1	0.045	0.055	1.15	1.39	
С	0.014	0.021	0.36	0.53	
DE	0.590	0.610	14.99	15.49	
É	0.395	0.410	10.04	10.41	
е	0.100	TYP.	P. 2.54 TY		
e1	0.200	0.200 BSC 5.08 BSC		BSC	
F	0.048	0.054	1.22	1.37	
H1	0.235	0.255	5.97	6.47	
Jı	0.100	0.110	2.54	2.79	
L	0.530	0.550	13.47	13.97	
Lı	0.130	0.150	3.31	3.81	2
ØΡ	0.149	0.153	3.79	3.88	
Q	0.102	0.112	2.60	2.84	

TO-220F-3L MECHANICAL DATA

SYMBOL	INCHES		MILLIM	NOTES	
STINIBUL	MIN	MAX	MIN	MAX	NOTES
Α	0.178	0.194	4.53	4.93	
b	0.028	0.036	0.71	0.91	
С	0.018	0.024	0.45	0.60	
D	0.617	0.633	15.67	16.07	
E	0.392	0.408	9.96	10.36	
е	0.100 TYP.		2.54TYP.		
H1	0.256	0.272	6.50	6.90	
J1	0.101	0.117	2.56	2.96	
L	0.503	0.519	12.78	13.18	
φQ	0.117	0.133	2.98	3.38	
b1	0.045	0.055	1.15	1.39	
L1	0.114	0.130	2.9	3.3	
Q1	0.122	0.138	3.10	3.50	
F	0.092	0.108	2.34	2.74	

Disclaimer :

Global Power Technologies Group reserves the right to make changes without notice to products herein to improve reliability, performance, or design. The information given in this document is believed to be accurate and reliable. However, it shall in no event be regarded as a guarantee of conditions and characteristics. With respect to any information regarding the application of the device, Global Power Technologies Group hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of patent rights of any third party.