imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GS9062 HD-LINX® II SD-SDI and DVB-ASI Serializer with ClockCleaner™

GS9062 Data Sheet

Key Features

- SMPTE 259M-C compliant scrambling and NRZ → NRZI encoding (with bypass)
- DVB-ASI sync word insertion and 8b/10b encoding
- adjustable loop bandwidth
- user selectable additional processing features including:
 - ANC data checksum, and line number calculation and insertion
 - TRS and EDH packet generation and insertion
 - · illegal code remapping
- internal flywheel for noise immune TRS generation
- 20-bit / 10-bit CMOS parallel input data bus
- 27MHz / 13.5MHz parallel digital input
- automatic standards detection and indication
- Pb-free and RoHS compliant
- 1.8V core power supply and 3.3V charge pump power supply
- 3.3V digital I/O supply
- JTAG test interface
- small footprint compatible with GS1560A, GS1561, GS1532, and GS9060

Applications

- SMPTE 259M-C Serial Digital Interfaces
- DVB-ASI Serial Digital Interfaces

Description

The GS9062 is a dual-standard serializer with an integrated cable driver. When used in conjunction with the GO1555/GO1525* Voltage Controlled Oscillator, a transmit solution can be realized for SD-SDI and DVB-ASI applications.

The device features an internal PLL, which can be configured for loop bandwidth as narrow as 100kHz. Thus the GS9062 can tolerate in excess of 300ps jitter on the input PCLK and still provide output jitter well within SMPTE specification. Connect the output clocks from Gennum's GS4911 clock generator directly to the GS9062's PCLK input and configure the GS9062's loop bandwidth accordingly.

In addition to serializing the input, the GS9062 performs NRZ-to-NRZI encoding and scrambling as per SMPTE 259M-C when operating in SMPTE mode. When operating in DVB-ASI mode, the device will insert K28.5 sync characters and 8b/10b encode the data prior to serialization.

Parallel data inputs are provided for 10-bit multiplexed or 20-bit demultiplexed formats. An appropriate parallel clock input signal is also required.

The integrated cable driver features an output mute on loss of parallel clock, high impedance mode and adjustable signal swing.

The GS9062 also includes a range of data processing functions including automatic standards detection and EDH support. The device can also insert TRS signals, re-map illegal code words and insert SMPTE 352M payload identifier packets. All processing features are optional and may be enabled/disabled via external control pin(s) and/or host interface programming.

The GS9062 is Pb-free, and the encapsulation compound does not contain halogenated flame retardant (RoHS compliant).

*For new designs use GO1555

Functional Block Diagram

Contents

Ke	y Fea	tures	1
Ap	plicati	ions	1
De	script	ion	1
Fu	nction	al Block Diagram	2
1.	Pin C	Dut	5
	1.1	Pin Assignment	5
	1.2	Pin Descriptions	6
2.	Elect	rical Characteristics	12
	2.1	Absolute Maximum Ratings	12
	2.2	DC Electrical Characteristics	12
	2.3	AC Electrical Characteristics	13
	2.4	Solder Reflow Profiles	15
	2.5	Input/Output Circuits	16
	2.6	Host Interface Maps	18
		2.6.1 Host Interface Map (Read only registers)	19
		2.6.2 Host Interface Map (R/W configurable registers)	20
3.	Detai	led Description	21
	3.1	Functional Overview	21
	3.2	Parallel Data Inputs	21
		3.2.1 Parallel Input in SMPTE Mode	22
		3.2.2 Parallel Input in DVB-ASI Mode	22
		3.2.3 Parallel Input in Data-Through Mode	22
		3.2.4 Parallel Input Clock (PCLK)	23
	3.3	SMPTE Mode	23
		3.3.1 Internal Flywheel	23
		3.3.2 HVF Timing Signal Extraction	24
	3.4	DVB-ASI Mode	25
		3.4.1 Control Signal Inputs	25
	3.5	Data-Through Mode	26
	3.6	Additional Processing Functions	26
		3.6.1 Input Data Blank	26
		3.6.2 Automatic Video Standard Detection	26
		3.6.3 Packet Generation and Insertion	28
	3.7	Parallel-To-Serial Conversion	34
	3.8	Serial Digital Data PLL	35
		3.8.1 External VCO	35
		3.8.2 Lock Detect Output	35
		3.8.3 Loop Bandwidth Adjustment	36
	3.9	Serial Digital Output	36
		3.9.1 Output Swing	37

	3.9.2 Serial Digital Output Mute	37
	3.10 GSPI Host Interface	37
	3.10.1 Command Word Description	38
	3.10.2 Data Read and Write Timing	
	3.10.3 Configuration and Status Registers	
	3.11 JTAG	40
	3.12 Device Power Up	41
	3.13 Device Reset	41
4.	Application Reference Design	42
	4.1 Typical Application Circuit	42
5.	References & Relevant Standards	43
6.	Package & Ordering Information	44
	6.1 Package Dimensions	44
	6.2 Packaging Data	45
	6.3 Ordering Information	45
7.	Revision History	46

1. Pin Out

1.1 Pin Assignment

1.2 Pin Descriptions

Table 1-1: Pin Descriptions

Pin Number	Name	Timing	Туре	Description
1	CP_VDD	_	Power	Power supply connection for the charge pump. Connect to +3.3V DC analog.
2	PD_GND	_	Power	Ground connection for the phase detector. Connect to analog GND.
3	PD_VDD	_	Power	Power supply connection for the phase detector. Connect to +1.8V DC analog.
4, 6 – 8, 10 – 11, 14 – 17, 31, 70 – 71	NC	-	-	No connect.
5	RSV	_	_	Reserved – connect to analog ground.
9	DVB_ASI	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. When set HIGH in conjunction with SMPTE_BYPASS = LOW, the device will be configured to operate in DVB-ASI mode. When set LOW, the device will not support the encoding of received DVB-ASI data.
12	20bit/10bit	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to select the input data bus width in SMPTE or Data-Through modes. This signal is ignored in DVB-ASI mode. When set HIGH, the parallel input will be 20-bit demultiplexed data. When set LOW, the parallel input will be 10-bit multiplexed data.
13	IOPROC_EN/DIS	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible. Used to enable or disable I/O processing features. When set HIGH, the following I/O processing features of the device are enabled: • EDH Packet Generation and Insertion • SMPTE 352M Packet Generation and Insertion • ANC Data Checksum Calculation and Insertion • TRS Generation and Insertion • Illegal Code Remapping To enable a subset of these features, keep IOPROC_EN/DIS HIGH and disable the individual feature(s) in the IOPROC_DISABLE register accessible via the host interface. When set LOW, the I/O processing features of the device are disabled, regardless of whether the features are enabled in the IOPROC_DISABLE register.

Table 1-1: Pin Descriptions (Continued)

Pin Number	Name	Timing	Туре	Description
18	SMPTE_BYPASS	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				When set HIGH in conjunction with DVB_ASI = LOW, the device will be configured to operate in SMPTE mode. All I/O processing features may be enabled in this mode.
				When set LOW, the device will not support the scrambling or encoding of received SMPTE data. No I/O processing features will be available.
19	RSET	Analog	Input	Used to set the serial digital output signal amplitude. Connect to CD_VDD through 281Ω +/- 1% for $800mV_{p-p}$ single-ended output swing.
20	CD_VDD	-	Power	Power supply connection for the serial digital cable driver. Connect to +1.8V DC analog.
21	SDO_EN/DIS	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to enable or disable the serial digital output stage.
				When set LOW, the serial digital output signals SDO and $\overline{\text{SDO}}$ are disabled and become high impedance.
				When set HIGH, the serial digital output signals SDO and SDO are enabled.
22	CD_GND	_	Power	Ground connection for the serial digital cable driver. Connect to analog GND.
23, 24	SDO, SDO	Analog	Output	Serial digital output signal operating at 270Mb/s.
				The slew rate of these outputs is automatically controlled to meet SMPTE 259M specifications.
25	RESET_TRST	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to reset the internal operating conditions to default settings and to reset the JTAG test sequence.
				Host Mode (JTAG/HOST = LOW) When asserted LOW, all functional blocks will be set to default conditions and all input and output signals become high impedance, including the serial digital outputs SDO and SDO.
				Must be set HIGH for normal device operation.
				JTAG Test Mode (JTAG/HOST = HIGH) When asserted LOW, all functional blocks will be set to default and the JTAG test sequence will be held in reset.
				When set HIGH, normal operation of the JTAG test sequence resumes.
26	JTAG/HOST	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to select JTAG Test Mode or Host Interface Mode.
				When set HIGH, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are configured for JTAG boundary scan testing.
				When set LOW, CS_TMS, SDOUT_TDO, SDI_TDI and SCLK_TCK are configured as GSPI pins for normal host interface operation.

Tabl	e 1-1:	Pin	Descriptions	(Continued)
------	--------	-----	--------------	-------------

Pin Number	Name	Timing	Туре	Description
27	CS_TMS	Synchronous with SCLK_TCK	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
		ODER_TOR		Chip Select / Test Mode Select
				\overline{CS}_{TMS} operates as the host interface chip select, \overline{CS} , and is active LOW.
				JTAG Test Mode (JTAG/HOST = HIGH) CS_TMS operates as the JTAG test mode select, TMS, and is active HIGH.
				NOTE: If the host interface is not being used, tie this pin HIGH.
28	SDOUT_TDO	Synchronous with	Output	CONTROL SIGNAL OUTPUT Signal levels are LVCMOS/LVTTL compatible.
		SCLK_TCK		Serial Data Output / Test Data Output
				Host Mode (JTAG/HOST = LOW) SDOUT_TDO operates as the host interface serial output, SDOUT, used to read status and configuration information from the internal registers of the device.
				JTAG Test Mode (JTAG/HOST = HIGH) SDOUT_TDO operates as the JTAG test data output, TDO.
29	SDIN_TDI	Synchronous with	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
		SCLK_TCK		Serial Data In / Test Data Input
				Host Mode (JTAG/HOST = LOW) SDIN_TDI operates as the host interface serial input, SDIN, used to write address and configuration information to the internal registers of the device.
				JTAG Test Mode (JTAG/HOST = HIGH) SDIN_TDI operates as the JTAG test data input, TDI.
				NOTE: If the host interface is not being used, tie this pin HIGH.
30	SCLK_TCK	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
		-		Serial Data Clock / Test Clock.
				Host Mode (JTAG/HOST = LOW) SCLK_TCK operates as the host interface burst clock, SCLK. Command and data read/write words are clocked into the device synchronously with this clock.
				JTAG Test Mode (JTAG/HOST = HIGH) SCLK_TCK operates as the JTAG test clock, TCK.
				NOTE: If the host interface is not being used, tie this pin HIGH.
32	BLANK	Synchronous with PCLK	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to enable or disable input data blanking.
				When set LOW, the luma and chroma input data is set to the appropriate blanking levels. Horizontal and vertical ancillary spaces will also be set to blanking levels.
				When set HIGH, the luma and chroma input data pass through the device unaltered.

Pin Number	Name	Timing	Туре	Description
33, 68	CORE_GND	_	Power	Ground connection for the digital core logic. Connect to digital GND.
34	F	Synchronous with PCLK	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to indicate the ODD / EVEN field of the video signal when DETECT_TRS is set LOW. The device will set the F bit in all outgoing TRS signals for the entire period that the F input signal is HIGH (IOPROC_EN/DIS must also be HIGH).
				The F signal should be set HIGH for the entire period of field 2 and should be set LOW for all lines in field 1 and for all lines in progressive scan systems.
				The F signal is ignored when DETECT_TRS = HIGH.
35	V	Synchronous with PCLK	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to indicate the portion of the video field / frame that is used for vertical blanking when DETECT_TRS is set LOW. The device will set the V bit in all outgoing TRS signals for the entire period that the V input signal is HIGH (IOPROC_EN/DIS must also be HIGH).
				The V signal should be set HIGH for the entire vertical blanking period and should be set LOW for all lines outside of the vertical blanking interval.
				The V signal is ignored when DETECT_TRS = HIGH.
36	Н	Synchronous with PCLK	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.
				Used to indicate the portion of the video line containing active video data when DETECT_TRS is set LOW. The device will set the H bit in all outgoing TRS signals for the entire period that the H input signal is HIGH (IOPROC_EN/DIS must also be HIGH).
				H signal timing is configurable via the H_CONFIG bit of the IOPROC_DISABLE register, accessible via the host interface.
				Active Line Blanking (H_CONFIG = 0_h) The H signal should be set HIGH for the entire horizontal blanking period, including the EAV and SAV TRS words, and LOW otherwise. This is the default setting.
				TRS Based Blanking (H_CONFIG = 1 _h)
				The H signal should be set HIGH for the entire horizontal blanking period as indicated by the H bit in the received TRS ID words, and LOW otherwise.
37, 64	CORE_VDD	-	Power	Power supply connection for the digital core logic. Connect to +1.8V DC digital.

Table 1-1: Pin Descriptions (Continued)

Pin Number	Name	Timing	Туре	Description				
38, 39, 42– 48, 50	DIN[0:9]	Synchronous with PCLK	Input	PARALLEL DATA BUS Signal levels are LVCMOS/L DIN9 is the MSB and DIN0 is	VTTL compatible. s the LSB.			
								20-bit mode 20bit/10bit = HIGH
					Data input in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW			
					High impedance in DVB-ASI mode SMPTE_BYPASS = LOW DVB_ASI = HIGH			
				10-bit mode 20bit/10bit = LOW	High impedance in all modes.			
40, 49, 60	IO_GND	_	Power	Ground connection for digita	I I/O buffers. Connect to digital GND.			
41, 53, 61	IO_VDD	-	Power	Power supply connection for DC digital.	digital I/O buffers. Connect to +3.3V			
51, 52, 54– 59, 62, 63	DIN[10:19]	Synchronous with PCLK	Input	PARALLEL DATA BUS Signal levels are LVCMOS/L DIN19 is the MSB and DIN1	VTTL compatible. 0 is the LSB.			
				20-bit mode 20bit/10bit = HIGH	Luma data input in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW			
					Data input in Data-Through mode SMPTE_BYPASS = LOW DVB_ASI = LOW			
					DVB-ASI data input in DVB-ASI mode SMPTE_BYPASS = LOW DVB_ASI = HIGH			
				10-bit mode 20bit/10bit = LOW	Multiplexed Luma and Chroma data input in SMPTE mode SMPTE_BYPASS = HIGH DVB_ASI = LOW			
					Data input in data through mode SMPTE_BYPASS = LOW DVB_ASI = LOW			
					DVB-ASI data input in <u>DVB-ASI mode</u> SMPTE_BYPASS = LOW DVB_ASI = HIGH			

Table 1-1: Pin	Descriptions	(Continued)
----------------	--------------	-------------

Pin Number	Name	Timing	Туре	Description	
67	DETECT_TRS	Non Synchronous	Input	CONTROL SIGNAL INPUT Signal levels are LVCMOS/LVTTL compatible.	
				Used to select the timing mode of the device.	
				When set HIGH, the device will lock the internal flywheel to the embedded TRS timing signals in the parallel input data.	
				When set LOW, the device will lock the internal flywheel to the externally supplied H, V, and F input signals.	
69	PCLK	-	Input	PARALLEL DATA BUS CLOCK Signal levels are LVCMOS/LVTTL compatible.	
				SD 20-bit mode PCLK = 13.5MHz	
				SD 10-bit mode PCLK = 27MHz	
72	LOCKED	Synchronous with PCLK	Output	STATUS SIGNAL OUTPUT Signal levels are LVCMOS / LVTTL compatible.	
				The LOCKED signal will be HIGH whenever the device has correctly received and locked to SMPTE compliant data in SMPTE mode or DVB-ASI compliant data in DVB-ASI mode.	
				It will be LOW otherwise.	
73, 74	VCO, VCO	Analog	Input	Differential inputs for the external VCO reference signal. For single ended devices such as the GO1555/GO1525*, VCO should be AC coupled to VCO_GND.	
				*For new designs use GO1555	
75	VCO_GND – Output Power Ground reference for the externa Connect to pins 2, 4, 6, and 8 of is an output.		Ground reference for the external voltage controlled oscillator. Connect to pins 2, 4, 6, and 8 of the GO1555/GO1525*. This pin is an output.		
				Should be isolated from all other grounds.	
				*For new designs use GO1555	
76	VCO_VCC	-	Output Power	Power supply for the external voltage controlled oscillator. Connect to pin 5 of the GO1555/GO1525*. This pin is an output.	
				Should be isolated from all other power supplies.	
				*For new designs use GO1555	
77	LF	Analog	Output	Control voltage to external voltage controlled oscillator. Nominally +1.25V DC.	
78	CP_CAP	Analog	Input	PLL lock time constant capacitor connection. Normally connected to VCO_GND through 2.2nF.	
79	LB_CONT	Analog	Input	Control voltage to set the loop bandwidth of the integrated reclocker.	
80	CP_GND	-	Power	Ground connection for the charge pump. Connect to analog GND.	

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Parameter	Value/Units
Supply Voltage Core	-0.3V to +2.1V
Supply Voltage I/O	-0.3V to +4.6V
Input Voltage Range (any input)	-2.0V to + 5.25V
Ambient Operating Temperature	$-20^{\circ}C \le T_{A} \le 85^{\circ}C$
Storage Temperature	-40°C ≤ T _{STG} ≤ 125°C
Solder Reflow Temperature	230°C
ESD Protection On All Pins	1kV

1. NOTE: See reflow solder profiles (Solder Reflow Profiles on page 15)

2. MIL STD 883 ESD protection applied to all pins on the device.

2.2 DC Electrical Characteristics

Table 2-1: DC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels	Notes
System								
Operation Temperature Range	T _A	-	0	_	70	°C	_	1
Digital Core Supply Voltage	CORE_VDD	_	1.65	1.8	1.95	V	1	1
Digital I/O Supply Voltage	IO_VDD	_	3.0	3.3	3.6	V	1	1
Charge Pump Supply Voltage	CP_VDD	_	3.0	3.3	3.6	V	1	1
Phase Detector Supply Voltage	PD_VDD	_	1.65	1.8	1.95	V	1	1
Input Buffer Supply Voltage	BUFF_VDD	-	1.65	1.8	1.95	V	1	1
Cable Driver Supply Voltage	CD_VDD	_	1.71	1.8	1.89	V	1	1
External VCO Supply Voltage Output	VCO_VCC	_	2.25	2.50	2.75	V	1	-
+1.8V Supply Current	I _{1V8}	-	_	_	245	mA	1	3
+3.3V Supply Current	I _{3V3}	-	_	_	45	mA	1	_
Total Device Power	P _D	_	_	-	590	mW	5	3

Table 2-1: DC Electrical Characteristics (Continued)

 $T_A = 0^{\circ}C$ to 70°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels	Notes
Digital I/O								
Input Logic LOW	V _{IL}	_	_	-	0.8	V	1	_
Input Logic HIGH	V _{IH}	-	2.1	_	-	V	1	_
Output Logic LOW	V _{OL}	8mA	_	0.2	0.4	V	1	_
Output Logic HIGH	V _{OH}	8mA	IO_VDD - 0.4	-	-	V	1	-
Input								
RSET Voltage	V _{RSET}	RSET=281Ω	0.54	0.6	0.66	V	1	2
Output								
Output Common Mode Voltage	V _{CMOUT}	75Ω load, RSET=281Ω	0.8	1.0	1.2	V	1	-
TEST LEVELS			NOTES					
 Production test at room temper voltage with guardbands for s Production test at room temper 	erature and nor upply and temp erature and nor	 All DC and A Set by the va SDO outputs 	C electric alue of the enabled.	al parame RSET res	ters within s sistor.	specification.		

2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test.

- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1, 2, or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- Not tested. Based on existing design/characterization data of similar product.
- 9. Indirect test.

2.3 AC Electrical Characteristics

Table 2-2: AC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels	Notes
System								
Device Latency		SMPTE and Data-Through modes	_	21	_	PCLK	6	_
		DVB-ASI mode	-	11	-	PCLK	6	_
Reset Pulse Width	t _{reset}		1	-	-	ms	7	3

Table 2-2: AC Electrical Characteristics (Continued)

 $T_A = 0^{\circ}C$ to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels	Notes
Parallel Input								
Parallel Clock Frequency	f _{PCLK}	-	13.5	-	27.0	MHz	1	_
Parallel Clock Duty Cycle	DC _{PCLK}	-	40	50	60	%	1	-
Input Data Setup Time	t _{SU}	-	2	-	-	ns	1	1
Input Data Hold Time	t _{IH}	-	1.5	-	-	ns	1	1
Serial Digital Output								
Serial Output Data Rate	DR _{SDO}	-	-	270	-	Mb/s	1	-
Serial Output Swing	ΔV_{SDD}	RSET = 281Ω Load = 75Ω	-	800	-	mVp-p	1	-
Serial Output Rise Time 20% ~ 80%	tr _{SDO}	ORL compensation using recommended circuit	400	550	1500	ps	1	-
Serial Output Fall Time 20% ~ 80%	tf _{SDO}	ORL compensation using recommended circuit	400	550	1500	ps	1	-
Serial Output Intrinsic Jitter	t _{IJ}	Pseudorandom and pathological signal	-	270	350	ps	1	-
Serial Output Duty Cycle Distortion	DCD _{SDO}	_	_	20	_	ps	1	2
GSPI								
GSPI Input Clock Frequency	f _{SCLK}	-	-	-	6.6	MHz	1	_
GSPI Input Clock Duty Cycle	DC _{SCLK}	-	40	50	60	%	6,7	-
GSPI Input Data Setup Time		-	0	-	-	ns	6,7	-
GSPI Input Data Hold Time		_	1.43	-	_	ns	6,7	_
GSPI Output Data Hold Time		-	2.10	-	_	ns	6,7	_
GSPI Output Data Delay Time		_	-	-	7.27	ns	6,7	_
TEST LEVELS			NOTES					

1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges.

Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test.

3. Production test at room temperature and nominal supply voltage.

4. QA sample test.

5. Calculated result based on Level 1, 2, or 3.

6. Not tested. Guaranteed by design simulations.

7. Not tested. Based on characterization of nominal parts.

8. Not tested. Based on existing design/characterization data of similar

product.

9. Indirect test.

1. With 15pF load.

2. Serial Duty Cycle Distortion is defined here to be the difference between the width of a '1' bit, and the width of a '0' bit.

3. See Device Power Up on page 41, Figure 3-13.

2.4 Solder Reflow Profiles

The device is manufactured with Matte-Sn terminations and is compatible with both standard eutectic and Pb-free solder reflow profiles. The recommended standard eutectic reflow profile is shown in Figure 2-1. MSL qualification was performed using the maximum Pb-free reflow profile shown in Figure 2-2.

Figure 2-1: Standard Eutectic Solder Reflow Profile

Figure 2-2: Maximum Pb-free Solder Reflow Profile (Preferred)

2.5 Input/Output Circuits

All resistors in ohms, all capacitors in farads, unless otherwise shown.

Figure 2-3: Serial Digital Output

Figure 2-5: PCLK Input

Figure 2-7: PLL Loop Bandwidth Control

2.6 Host Interface Maps

REGISTER NAME	ADDRESS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LINE_352M_f2	1Ch	Not Used	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0				
LINE_352M_f1	1Bh	Not Used	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0				
	1Ah																
FF_LINE_END_F1	19h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
FF_LINE_START_F1	18h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
FF_LINE_END_F0	17h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
FF_LINE_START_F0	16h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
AP_LINE_END_F1	15h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
AP_LINE_START_F1	14h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
AP_LINE_END_F0	13h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
AP_LINE_START_F0	12h	Not Used	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0					
RASTER_STRUCTURE4	11h	Not Used	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0				
RASTER_STRUCTURE3	10h	Not Used	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0				
RASTER_STRUCTURE2	0Fh	Not Used	Not Used	Not Used	Not Used	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
RASTER_STRUCTURE1	0Eh	Not Used	Not Used	Not Used	Not Used	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	0Dh																
	0Ch																
VIDEO_FORMAT_B	0Bh	VF4-b7	VF4-b6	VF4-b5	VF4-b4	VF4-b3	VF4-b2	VF4-b1	VF4-b0	VF3-b7	VF3-b6	VF3-b5	VF3-b4	VF3-b3	VF3-b2	VF3-b1	VF3-b0
VIDEO_FORMAT_A	0Ah	VF2-b7	VF2-b6	VF2-b5	VF2-b4	VF2-b3	VF2-b2	VF2-b1	VF2-b0	VF1-b7	VF1-b6	VF1-b5	VF1-b4	VF1-b3	VF1-b2	VF1-b1	VF1-b0
	09h																
	08h																
	07h																
	06h																
	05h																
VIDEO_STANDARD	04h	Not Used	VDS-b4	VDS-b3	VDS-b2	VDS-b1	VDS-b0	INT_PROG	STD_LOCK	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used
	03h																
EDH_FLAG	02h	Not Used	ANC-UES	ANC-IDA	ANC-IDH	ANC-EDA	ANC-EDH	FF-UES	FF-IDA	FF-IDH	FF-EDA	FF-EDH	AP-UES	AP-IDA	AP-IDH	AP-EDA	AP-EDH
	01h																
IOPROC_DISABLE	00h	Not Used	H_CONFIG	Not Used	352M_INS	ILLEGAL_ REMAP	EDH_CRC_ INS	ANC_CSUM_ INS	Not Used	Not Used	TRS_INS						

2.6.1 Host Interface Map (Read only registers)

REGISTER NAME	ADDRESS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1Ch																
	1Bh																
	1Ah																
	19h																
	18h																
	17h																
	16h																
	15h																
	14h																
	13h																
	12h																
RASTER_STRUCTURE4	11h						b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
RASTER_STRUCTURE3	10h						b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
RASTER_STRUCTURE2	0Fh					b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
RASTER_STRUCTURE1	0Eh					b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	0Dh																
	0Ch																
	0Bh																
	0Ah																
	09h																
	08h																
	07h																
	06h																
	05h																
VIDEO_STANDARD	04h		VDS-b4	VDS-b3	VDS-b2	VDS-b1	VDS-b0	INT_PROG	STD_LOCK								
	03h																
	02h																
	01h																
	00h																

2.6.2 Host Interface Map (R/W configurable registers)

REGISTER NAME	ADDRESS	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LINE_352M_f2	1Ch						b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
LINE_352M_f1	1Bh						b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	1Ah																
FF_LINE_END_F1	19h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FF_LINE_START_F1	18h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FF_LINE_END_F0	17h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FF_LINE_START_F0	16h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
AP_LINE_END_F1	15h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
AP_LINE_START_F1	14h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
AP_LINE_END_F0	13h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
AP_LINE_START_F0	12h							b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	11h																
	10h																
	0Fh																
	0Eh																
	0Dh																
	0Ch																
VIDEO_FORMAT_B	0Bh	VF4-b7	VF4-b6	VF4-b5	VF4-b4	VF4-b3	VF4-b2	VF4-b1	VF4-b0	VF3-b7	VF3-b6	VF3-b5	VF3-b4	VF3-b3	VF3-b2	VF3-b1	VF3-b0
VIDEO_FORMAT_A	0Ah	VF2-b7	VF2-b6	VF2-b5	VF2-b4	VF2-b3	VF2-b2	VF2-b1	VF2-b0	VF1-b7	VF1-b6	VF1-b5	VF1-b4	VF1-b3	VF1-b2	VF1-b1	VF1-b0
	09h																
	08h																
	07h																
	06h																
	05h																
	04h																
	03h																
EDH_FLAG	02h		ANC-UES	ANC-IDA	ANC-IDH	ANC-EDA	ANC-EDH	FF-UES	FF-IDA	FF-IDH	FF-EDA	FF-EDH	AP-UES	AP-IDA	AP-IDH	AP-EDA	AP-EDH
	01h																
IOPROC_DISABLE	00h								H_CONFIG		352M_INS	ILLEGAL_ REMAP	EDH_CRC_ INS	ANC_ CSUM_INS			TRS_INS

3. Detailed Description

3.1 Functional Overview

The GS9062 is a dual-standard serializer with an integrated cable driver. When used in conjunction with the external GO1555/GO1525* Voltage Controlled Oscillator, a transmit solution at 270Mb/s is realized.

The device has three different modes of operation which must be set by the application layer through external device pins.

When SMPTE mode is enabled, the device will accept 10-bit multiplexed or 20-bit demultiplexed SMPTE compliant data. The device's additional processing features are also enabled in this mode.

In DVB-ASI mode, the GS9062 will accept an 8-bit parallel DVB-ASI compliant transport stream on its upper input bus. The serial output data stream will be 8b/10b encoded and stuffed.

The GS9062's third mode allows for the serializing of data not conforming to SMPTE or DVB-ASI streams.

The provided serial digital outputs feature a high impedance mode, output mute on loss of parallel clock and adjustable signal swing.

In the digital signal processing core, several data processing functions are implemented including SMPTE 352M and EDH data packet generation and insertion, and automatic video standards detection. These features are all enabled by default, but may be individually disabled via internal registers accessible through the GSPI host interface.

Finally, the GS9062 contains a JTAG interface for boundary scan test implementations.

*For new designs use GO1555

3.2 Parallel Data Inputs

Data inputs enter the device on the rising edge of PCLK as shown in Figure 3-1.

The input data format is defined by the setting of the external SMPTE_BYPASS and DVB_ASI pins and may be presented in 10-bit or 20-bit format. The input data bus width is controlled independently from the internal data bus width by the 20bit/10bit input pin.

Figure 3-1: PCLK to Data Timing

3.2.1 Parallel Input in SMPTE Mode

When the device is operating in SMPTE mode, SMPTE Mode on page 23, data may be presented to the input bus in either multiplexed or demultiplexed form depending on the setting of the 20bit/10bit input pin.

In 20-bit mode, (20bit/10bit = HIGH), the input data format should be word aligned, demultiplexed luma and chroma data. Luma words should be presented to DIN[19:10] while chroma words should occupy DIN[9:0].

In 10-bit mode, $(20bit/\overline{10bit} = LOW)$, the input data format should be word aligned, multiplexed luma and chroma data. The data should be presented to DIN[19:10]. DIN[9:0] will be high impedance in this mode.

3.2.2 Parallel Input in DVB-ASI Mode

When operating in DVB-ASI mode, DVB-ASI Mode on page 25, the GS9062 automatically configures the input port for 10-bit operation regardless of the setting of the 20bit/10bit pin.

The device will accept 8-bit data words on DIN[17:10] such that DIN17 = HIN is the most significant bit of the encoded transport stream data and DIN10 = AIN is the least significant bit.

In addition, DIN19 and DIN18 will be configured as the DVB-ASI control signals INSSYNCIN and KIN respectively. See DVB-ASI Mode on page 25 for a description of these DVB-ASI specific input signals.

DIN[9:0] will be high impedance when the GS9062 is operating in DVB-ASI mode.

3.2.3 Parallel Input in Data-Through Mode

When operating in Data-Through mode, Data-Through Mode on page 26, the GS9062 passes data presented to the parallel input bus to the serial output without performing any encoding or scrambling.

The input data bus width accepted by the device in this mode is controlled by the setting of the $20bit/\overline{10bit}$ pin.

3.2.4 Parallel Input Clock (PCLK)

The frequency of the PCLK input signal required by the GS9062 is determined by the input data format. Table 3-1 below lists the possible input signal formats and their corresponding parallel clock rates. Note that DVB-ASI input will always be in 10-bit format, regardless of the setting of the 20bit/10bit pin.

Input Data Format	DOUT	DOUT	PCLK	Control Signals						
	[13.10]	[3.0]		20bit/10bit	SMPTE_BYPASS	DVB_ASI				
SMPTE MODE										
20bit DEMULTIPLEXED	LUMA	CHROMA	13.5MHz	HIGH	HIGH	LOW				
10bit MULTIPLEXED	LUMA / CHROMA	HIGH IMPEDANCE	27MHz	LOW	HIGH	LOW				
DVB-ASI MODE										
10bit DVB-ASI	DVB-ASI DATA	HIGH IMPEDANCE	27MHz	HIGH	LOW	HIGH				
	DVB-ASI DATA	HIGH IMPEDANCE	27MHz	LOW	LOW	HIGH				
DATA-THROUGH MODE										
20bit DEMULTIPLEXED	DATA	DATA	13.5MHz	HIGH	LOW	LOW				
10bit MULTIPLEXED	DATA	HIGH IMPEDANCE	27MHz	LOW	LOW	LOW				

Table 3-1: Parallel Data Input Format

3.3 SMPTE Mode

The GS9062 is said to be in SMPTE mode when the SMPTE_BYPASS pin is set HIGH and the DVB_ASI pin is set LOW.

In this mode, the parallel data will be scrambled according to SMPTE 259M, and NRZ-to-NRZI encoded prior to serialization.

3.3.1 Internal Flywheel

The GS9062 has an internal flywheel which is used in the generation of internal / external timing signals, and in automatic video standards detection. It is operational in SMPTE mode only.

The flywheel consists of a number of counters and comparators operating at video pixel and video line rates. These counters maintain information about the total line length, active line length, total number of lines per field / frame and total active lines per field / frame for the received video standard.

When DETECT_TRS is LOW, the flywheel will be locked to the externally supplied H, V, and F timing signals.

When DETECT_TRS is HIGH, the flywheel will be locked to the embedded TRS signals in the parallel input data. Both 8-bit and 10-bit TRS code words will be identified by the device.

The flywheel 'learns' the video standard by timing the horizontal and vertical reference information supplied a the H, V, and F input pins, or contained in the TRS ID words of the received video data. Full synchronization of the flywheel to the received video standard therefore requires one complete video frame.

Once synchronization has been achieved, the flywheel will continue to monitor the received TRS timing or the supplied H, V, and F timing information to maintain synchronization.

3.3.2 HVF Timing Signal Extraction

As discussed above, the GS9062's internal flywheel may be locked to externally provided H, V, and F signals when DETECT_TRS is set LOW by the application layer.

The H signal timing should also be configured via the H_CONFIG bit of the internal IOPROC_DISABLE register as either active line based blanking or TRS based blanking, Packet Generation and Insertion on page 28.

Active line based blanking is enabled when the H_CONFIG bit is set LOW. In this mode, the H input should be HIGH for the entire horizontal blanking period, including the EAV and SAV TRS words. This is the default H timing assumed by the device.

When H_CONFIG is set HIGH, TRS based blanking is enabled. In this case, the H input should be set HIGH for the entire horizontal blanking period as indicated by the H bit in the associated TRS words.

The timing of these signals is shown in Figure 3-2.

H:V:F TIMING - 10-BIT INPUT MODE

Figure 3-2: H, V, F Timing

3.4 DVB-ASI Mode

The GS9062 is said to be in DVB-ASI mode when the SMPTE_BYPASS pin is set LOW and the DVB_ASI pin is set HIGH.

In this mode, all SMPTE processing functions are disabled, and the 8-bit transport stream data will be 8b/10b encoded prior to serialization.

3.4.1 Control Signal Inputs

In DVB-ASI mode, the DIN19 and DIN18 pins will be configured as DVB-ASI control signals INSSYNCIN and KIN respectively.

When INSSYNCIN is set HIGH, the device will insert K28.5 sync characters into the data stream. This function is used to assist system implementations where the GS9062 may be preceded by an external data FIFO. Parallel DVB-ASI data may be clocked into the FIFO at some rate less than 27MHz. The INSSYNCIN input may then be connected to the FIFO empty signal, thus providing a means of padding up the data transmission rate to 27MHz. See Figure 3-3.

NOTE: 8b/10b encoding will take place after K28.5 sync character insertion.

KIN should be set HIGH whenever the parallel data input is to be interpreted as any special character defined by the DVB-ASI standard (including the K28.5 sync character). This pin should be set LOW when the input is to be interpreted as data.

NOTE: When operating in DVB-ASI mode, DIN[9:0] become high impedance.

