

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









June 2001 Revised February 2002

# GTLP2T152 2-Bit LVTTL/GTLP Transceiver

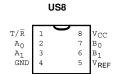
#### **General Description**

The GTLP2T152 is a 2-bit transceiver that provides LVTTL-to-GTLP signal level translation. Data directional control is handled with a transmit/receive pin. High-speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus-settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transistor logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage and temperature compensated. GTLP's I/O structure is similar to GTL and BTL but offers different output levels and receiver threshold. Typical GTLP output voltage levels are:  $V_{OL} = 0.5 V, \, V_{OH} = 1.5 V, \, and \, V_{REF} = 1 V.$ 

#### **Features**

- Bidirectional interface between GTLP and LVTTL logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V<sub>REF</sub> pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- $\blacksquare$  Designed using Fairchild advanced BiCMOS technology
- Bushold data inputs on A port to eliminate the need for external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- A Port source/sink -24mA/+24mA
- B Port sink +50mA


#### **Ordering Code:**

| Order Number | Package Number | Package Description                                                                         |
|--------------|----------------|---------------------------------------------------------------------------------------------|
| GTLP2T152M   | M08A           | 8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TUBE]          |
| GTLP2T152MX  |                | 8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TAPE and REEL] |
| GTLP2T152K8X |                | 8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide [TAPE and REEL]                           |

#### **Pin Descriptions**

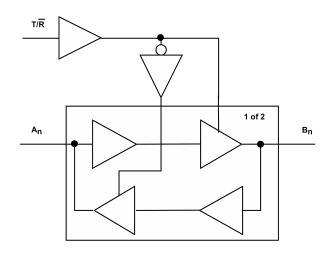
| Pin Names                 | Description                                               |  |  |
|---------------------------|-----------------------------------------------------------|--|--|
| T/R                       | LVTTL Direction Control (Receive Direction is Active LOW) |  |  |
| $V_{CC}$ , GND, $V_{REF}$ | Device Supplies                                           |  |  |
| A <sub>n</sub>            | A Port LVTTL Input/Output                                 |  |  |
| B <sub>n</sub>            | B Port GTLP Input/Output                                  |  |  |

#### **Connection Diagrams**



#### SOIC

| $v_{CC}$       | 1 | 8 | T/R            |
|----------------|---|---|----------------|
| B <sub>0</sub> | 2 | 7 | $A_0$          |
| B <sub>1</sub> | 3 | 6 | A <sub>1</sub> |
| $v_{REF}$      | 4 | 5 | GND            |
|                |   |   |                |


## **Functional Description**

The GTLP2T152 is a 2-bit transceiver that supports GTLP and LVTTL signal levels. Data polarity is non-inverting and the the GTLP/LVTTL outputs are controlled by the T/R pin.

#### **Functional Table**

| Inputs | Outputs                                       | Description                        |  |
|--------|-----------------------------------------------|------------------------------------|--|
| T/R    | Outputs                                       |                                    |  |
| Н      | Bus A <sub>n</sub> Data to Bus B <sub>n</sub> | B <sub>n</sub> Output Data Enabled |  |
| L      | Bus B <sub>n</sub> Data to Bus A <sub>n</sub> | A <sub>n</sub> Output Data Enabled |  |

## **Logic Diagram**



#### **Absolute Maximum Ratings**(Note 1)

Supply Voltage (V<sub>CC</sub>) -0.5V to +4.6V DC Input Voltage (V<sub>I</sub>) -0.5V to +4.6V

DC Output Voltage  $(V_O)$ 

-0.5V to +4.6V Outputs 3-STATE Outputs Active (Note 2) -0.5V to +4.6V

DC Output Sink Current into

A Port I<sub>OL</sub> 48 mA

DC Output Source Current from

A Port I<sub>OH</sub> -48 mA

DC Output Sink Current into

B Port in the LOW State,  $I_{\rm OL}$ 100 mA

DC Input Diode Current (I<sub>IK</sub>) -50 mA  $V_1 < 0V$ 

DC Output Diode Current (I<sub>OK</sub>)

 $V_{O} < 0V$ -50 mA **ESD** Rating >2000V

Storage Temperature  $(T_{STG})$ -65°C to +150°C

#### **Recommended Operating Conditions**

Supply Voltage V<sub>CC</sub> 3.15V to 3.45V

Bus Termination Voltage (V<sub>TT</sub>)

**GTLP** 1.47V to 1.53V 0.98V to 1.02V  $V_{\mathsf{REF}}$ 

Input Voltage (V<sub>I</sub>)

0.0V to  $V_{\text{CC}}$ on A Port and Control Pins

HIGH Level Output Current (I<sub>OH</sub>)

-24 mA

LOW Level Output Current  $(I_{OL})$ 

A Port +24 mA B Port +50 mA

Operating Temperature (T<sub>A</sub>) -40°C to +85°C

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum rating. The  $\,$ "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

#### **DC Electrical Characteristics**

Over Recommended Operating Free-Air Temperature Range,  $V_{REF} = 1.0V$  (unless otherwise noted).

| S                | Symbol       | Test Cond                             | itions                                              | Min                      | Typ<br>(Note 3) | Max                     | Units |  |
|------------------|--------------|---------------------------------------|-----------------------------------------------------|--------------------------|-----------------|-------------------------|-------|--|
| V <sub>IH</sub>  | B Port       |                                       |                                                     | V <sub>REF</sub> + 0.05  |                 | V <sub>TT</sub>         | V     |  |
|                  | Others       |                                       |                                                     | 2.0                      |                 |                         | V     |  |
| V <sub>IL</sub>  | B Port       |                                       |                                                     | 0.0                      |                 | V <sub>REF</sub> - 0.05 | V     |  |
|                  | Others       |                                       |                                                     |                          |                 | 0.8                     | V     |  |
| V <sub>REF</sub> | B Port       |                                       |                                                     | 0.7V                     | 1.0             | 1.3V                    | V     |  |
| V <sub>TT</sub>  | B Port       |                                       |                                                     | V <sub>REF</sub> + 50 mV | 1.5             | V <sub>CC</sub>         | V     |  |
| V <sub>IK</sub>  |              | V <sub>CC</sub> = 3.15V               | $I_1 = -18 \text{ mA}$                              |                          |                 | -1.2                    | V     |  |
| V <sub>OH</sub>  | A Port       | V <sub>CC</sub> = Min to Max (Note 4) | $I_{OH} = -100  \mu A$                              | V <sub>CC</sub> - 0.2    |                 |                         |       |  |
|                  |              | V <sub>CC</sub> = 3.15V               | $I_{OH} = -8 \text{ mA}$                            | 2.4                      |                 |                         | V     |  |
|                  |              |                                       | I <sub>OH</sub> = -24 mA                            | 2.2                      |                 |                         |       |  |
| V <sub>OL</sub>  | A Port       | V <sub>CC</sub> = Min to Max (Note 4) | I <sub>OL</sub> = 100 μA                            |                          |                 | 0.2                     |       |  |
|                  |              | V <sub>CC</sub> = 3.15V               | I <sub>OL</sub> = 8 mA                              |                          |                 | 0.4                     | V     |  |
|                  |              | V <sub>CC</sub> = 3.15V               | I <sub>OL</sub> = 24 mA                             |                          |                 | 0.5                     |       |  |
|                  | B Port       | V <sub>CC</sub> = 3.15V               | I <sub>OL</sub> = 40 mA                             |                          |                 | 0.4                     | .,    |  |
|                  |              |                                       | I <sub>OL</sub> = 50 mA                             |                          |                 | 0.55                    | V     |  |
| l <sub>l</sub>   | Control Pins | V <sub>CC</sub> = 3.45V               | V <sub>I</sub> = 3.45V                              |                          |                 | 5                       |       |  |
|                  |              |                                       | $V_1 = 0V$                                          |                          |                 | -5                      | μΑ    |  |
|                  | A Port       | V <sub>CC</sub> = 3.45V               | V <sub>I</sub> = 3.45V                              |                          |                 | 10                      |       |  |
|                  |              |                                       | $V_1 = 0V$                                          |                          |                 | -10                     | μΑ    |  |
|                  | B Port       | V <sub>CC</sub> = 3.45V               | V <sub>I</sub> = 3.45V                              |                          |                 | 5                       |       |  |
|                  |              |                                       | $V_1 = 0$                                           |                          |                 | -5                      | μΑ    |  |
| I <sub>OFF</sub> | A Port,      | V <sub>CC</sub> = 0                   | $V_1 \text{ or } V_0 = 0 \text{ to } 3.45 \text{V}$ |                          |                 | 30                      | μА    |  |
|                  | Control Pins |                                       |                                                     |                          |                 |                         |       |  |
|                  | B Port       | V <sub>CC</sub> = 0                   | $V_{I} \text{ or } V_{O} = 0 \text{ to } 3.45V$     |                          |                 | 30                      | μА    |  |
| I (HOLD)         | A Port       | V <sub>CC</sub> = 3.15V               | V <sub>I</sub> = 0.8V                               | 75                       |                 |                         |       |  |
|                  |              |                                       | $V_I = 2.0V$                                        |                          |                 | -75                     | μΑ    |  |
| l <sub>ozh</sub> | A Port       | V <sub>CC</sub> = 3.45V               | $V_{O} = 3.45V$                                     | j                        |                 | 10                      | μА    |  |
|                  | B Port       | 1                                     | $V_{O} = 3.45V$                                     | İ                        |                 | 5                       | μА    |  |

#### DC Electrical Characteristics (Continued)

| Symbol             |              | Test Conditions                                          |                              | Min | Typ<br>(Note 3) | Max | Units |
|--------------------|--------------|----------------------------------------------------------|------------------------------|-----|-----------------|-----|-------|
| I <sub>OZL</sub>   | A Port       | V <sub>CC</sub> = 3.45V                                  | $V_O = 0V$                   |     |                 | -10 | ^     |
|                    | B Port       |                                                          | $V_O = 0V$                   |     |                 | -5  | μΑ    |
| I <sub>PU/PD</sub> | All Ports    | V <sub>CC</sub> = 0 to 1.5V                              | V <sub>I</sub> = 0 to 3.45V  |     |                 | 30  | μΑ    |
| I <sub>CC</sub>    | A Port       | V <sub>CC</sub> = 3.45V                                  | Outputs HIGH                 |     |                 | 11  |       |
|                    | or B Port    | I <sub>O</sub> = 0                                       | Outputs LOW                  |     |                 | 11  | mA    |
|                    |              | V <sub>I</sub> = V <sub>CC</sub> /V <sub>TT</sub> or GND | Outputs Disabled             |     |                 | 11  |       |
| $\Delta I_{CC}$    | A Port and   | $V_{CC} = 3.45V,$                                        | One Input at V <sub>CC</sub> |     |                 | 2   | mA    |
| (Note 5)           | Control Pins | A or Control Inputs at V <sub>CC</sub> or GND            | -0.6V                        |     |                 |     |       |
| Ci                 | Control Pins |                                                          | $V_I = V_{CC}$ or 0          |     |                 | 3   | pF    |
| C <sub>I/O</sub>   | A Port       |                                                          | $V_I = V_{CC}$ or 0          |     |                 | 5   | pF    |
|                    | B Port       |                                                          | $V_I = V_{TT}$ or 0          |     |                 | 5.5 | pF    |

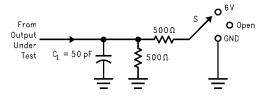
Note 3: All typical values are at  $V_{CC} = 3.3V$  and  $T_A = 25^{\circ}C$ .

Note 4: For conditions shown as Min, use the appropriate value specified under recommended operating conditions.

 $\textbf{Note 5:} \ \text{This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{CC}$ or GND.}$ 

Note: GTLP V<sub>REF</sub> and V<sub>TT</sub> are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V<sub>TT</sub> and R<sub>TERM</sub> can be adjusted beyond the recommended operating to accommodate backplane impedances other than 50Ω, but must remain within the boundaries of the DC Absolute Maximum Ratings. Similarly, V<sub>REF</sub> can be adjusted to optimize noise margin.

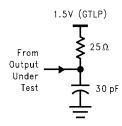
#### **AC Electrical Characteristics**


Over recommended range of supply voltage and operating free-air temperature,  $V_{REF}$  = 1.0V (unless otherwise noted).  $C_L$  = 30 pF for B Port and  $C_L$  = 50 pF for A Port.

| Symbol            | From                                    | То       | Min | Тур      | Max | Unit  |
|-------------------|-----------------------------------------|----------|-----|----------|-----|-------|
|                   | (Input)                                 | (Output) |     | (Note 6) |     | Offic |
| t <sub>PLH</sub>  | A                                       | В        | 1.2 | 2.9      | 7.3 | ns    |
| t <sub>PHL</sub>  | ^                                       | Ь        | 0.8 | 2.0      | 4.5 | 110   |
| t <sub>PLH</sub>  | В                                       | A        | 1.4 | 2.5      | 4.4 | ns    |
| t <sub>PHL</sub>  | В                                       | ^        | 1.6 | 2.7      | 5.0 | 115   |
| t <sub>RISE</sub> | Transition Time, B Outputs (20% to 80%) |          |     | 1.5      |     | ns    |
| t <sub>FALL</sub> | Transition Time, B Outputs (80% to 20%) |          |     | 1.8      |     | ns    |
| t <sub>RISE</sub> | Transition Time, A Outputs (10% to 90%) |          |     | 2.5      |     | ns    |
| t <sub>FALL</sub> | Transition Time, A Outputs (90% to 10%) |          |     | 2.2      |     | ns    |

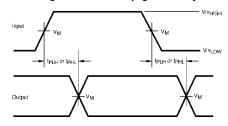
Note 6: All typical values are at  $V_{CC}=3.3V,$  and  $T_A=25^{\circ}C.$ 

### **Test Circuits and Timing Waveforms**

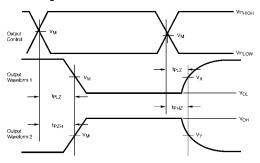

#### **Test Circuit for A Outputs**



| Test                               | S    |
|------------------------------------|------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | OPEN |
| $t_{PLZ}/t_{PZL}$                  | 6V   |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND  |


Note: C<sub>L</sub> includes probes and Jig capacitance.

#### **Test Circuit for B Outputs**




Note: C<sub>L</sub> includes probes and Jig capacitance. **Note:** For B Port,  $C_L = 30 \text{ pF}$  is used for worst case.

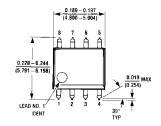
#### **Voltage Waveforms Propagation Delay**

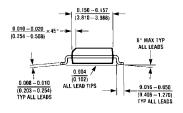


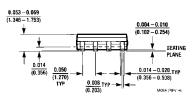
#### Voltage Waveform Enable and Disable Times



|                     | A or LVTTL<br>Pins     | B or GTLP<br>Pins |
|---------------------|------------------------|-------------------|
| V <sub>INHIGH</sub> | V <sub>CC</sub>        | 1.5               |
| V <sub>INLOW</sub>  | 0.0                    | 0.0               |
| V <sub>M</sub>      | V <sub>CC</sub> /2     | 1.0               |
| V <sub>X</sub>      | $V_{OL} + 0.3V$        | N/A               |
| V <sub>Y</sub>      | V <sub>OH</sub> – 0.3V | N/A               |

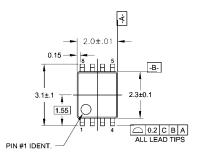

Note: Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control.

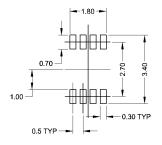

Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.


Note: All input pulses have the following characteristics:

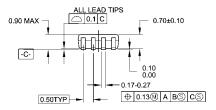
Frequency = 10MHz, t<sub>RISE</sub> = t<sub>FALL</sub> = 2 ns (10% to 90%), Z<sub>O</sub> = 50Ω. The outputs are measured one at a time with one transition per measurement.

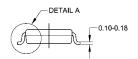
## Physical Dimensions inches (millimeters) unless otherwise noted

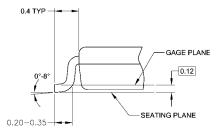






8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M08A


## Physical Dimensions inches (millimeters) unless otherwise noted (Continued)






#### LAND PATTERN RECOMMENDATION







#### NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

#### MAB08AREVC

#### 8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com