mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR

GTLP6C816 GTLP/TTL 1:6 Clock Driver

General Description

The GTLP6C816 is a clock driver that provides TTL to GTLP signal level translation (and vice versa). The device provides a high speed interface between cards operating at TTL logic levels and a backplane operating at GTLP logic levels. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port

June 1998

Revised December 2000

- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of precess, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technology
 Bushold data inputs on A port to eliminate the need for
- external pull-up resistors for unused inputs Power up/down and power off high impedance for live insertion
- 5V over voltage tolerance on LVTTL ports
- Open drain on GTLP to support wired-or connection
- A Port source/sink -24mA/+24mA
- B Port sink +50mA
- 1:6 fanout clock driver for TTL port
- 1:2 fanout clock driver for GTLP port

Ordering Code:

Order Number	Package Number	Package Description	
GTLP6C816MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
Device also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.			

Pin Descriptions

	1
Pin Names	Description
TTLIN, GTLPIN	Clock Inputs (TTL and GTLP respectively)
OEB	Output Enable (Active LOW) GTLP Port (TTL Levels)
OEA	Output Enable (Active LOW) TTL Port (TTL Levels)
V _{CCT} .GNDT	TTL Output Supplies (5V)
V _{CC}	Internal Circuitry V _{CC} (5V)
GNDG	OBn GTLP Output Grounds
V _{REF}	Voltage Reference Input
OA0-OA5	TTL Buffered Clock Outputs
OB0-OB1	GTLP Buffered Clock Outputs

Connection Diagram

TTLIN -	1	24	— GNDT
0A0 —	2	23	- OEB
GNDT —	3	22	— ово
0A1 —	4	21	- GNDG
v _{сст} —	5	20	— V _{REF}
0A2 —	6	19	— GNDG
GNDT —	7	18	– v _{cc}
0A3 —	8	17	— OB1
v _{сст} —	9	16	— GNDG
0A 4 —	10	15	- GTLPIN
GNDT —	11	14	- OEA
0A5 —	12	13	— GNDT

Functional Description

The GTLP6C816 is a clock driver providing TTL-to-GTLP clock translation, and GTLP-to-TTL clock translation in the same package. The TTL-to-GTLP direction is a 1:2 clock driver path with a single Enable pin (OEB). For the GTLP-to-TTL direction the clock receiver path is a 1:6 buffer with a single Enable control (OEA). Data polarity is inverting for both directions.

Truth Tables

· · · · · · · · · · · · · · · · · · ·						
Inpu	ts	Outputs				
TTLIN	OEB	OBn				
Н	L	L				
L	L	Н				
Х	Н	High Z				
Inpu	ts	Outputs				
Inpu GTLPIN	ts OEA	Outputs OAn				
Inpu GTLPIN H	ts OEA L	Outputs OAn L				
Inpu GTLPIN H L	ts OEA L L	Outputs OAn L H				

Logic Diagram

Absolute Maximum Ratings(Note 1)

		<u> </u>
Supply Voltage (V _{CC})	-0.5V to +7.0V	U
DC Input Voltage (VI)	-0.5V to +7.0V	:
DC Output Voltage (V _O)		
Outputs 3-STATE	-0.5V to +7.0V	
Outputs Active (Note 2)	-0.5V to +7.0V	
DC Output Sink Current into		
OA Port I _{OL}	48 mA	
DC Output Source Current		
from OA Port I _{OH}	–48 mA	
DC Output Sink Current into		
OB Port in the LOW State I _{OL}	80 mA	
DC Input Diode Current (IIK)		
V ₁ < 0V	–50 mA	
DC Output Diode Current (I _{OK})		No
$V_{O} < 0V$	–50 mA	wh coi
$V_{O} > V_{CC}$	+50 mA	Fu
ESD Rating	> 2000V	No
Storage Temperature (T _{STG})	-65°C to +150°C	No

Recommended Operating Conditions (Note 3) 4.75V to 5.25V Supply Voltage V_{CC} Bus Termination Voltage (V_{TT}) GTLP 1.47V to 1.53V V_{REF} 0.98V to 1.02V Input Voltage (VI) on INA Port and Control Pins 0.0V to 5.5V HIGH Level Output Current (I_{OH}) OA Port –24 mA LOW Level Output Current (I_{OL}) OA Port +24 mA OB Port +34 mA Operating Temperature (T_A) -40°C to +85°C te 1: Absolute Maximum continuous ratings are those values beyond

which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: I_o Absolute Maximum Rating must be observed.

Note 3: Unused input must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{\mbox{\scriptsize REF}}$ = 1.0V (unless otherwise noted).

	Symbol	Test C	onditions	Min	Typ (Note 4)	Мах	Units
VIH	GTLPIN			V _{REF} +0.05		V _{TT}	М
	Others			2.0			v
VIL	GTLPIN			0.0		V _{REF} -0.05	М
	Others					0.8	Ň
V _{REF}	GTLP				1.0		V
(Note 5)	GTL				0.8		· ·
V _{TT}	GTLP				1.5		V
(Note 5)	GTL				1.2		· ·
VIK		$V_{CC} = 4.75V$	I _I = -18 mA			-1.2	V
V _{OH}	OAn Port	$V_{CC} = 4.75V$	I _{OH} = -100 μA	V _{CC} -0.2			
			I _{OH} = -18 mA	2.4			V
			I _{OH} = -24 mA	2.2			1
V _{OL}	OAn Port	$V_{CC} = 4.75V$	I _{OL} = 100 μA			0.2	
			I _{OL} = 18 mA			0.4	v
			I _{OL} = 24 mA			0.5	1
V _{OL}	OBn Port	$V_{CC} = 4.75V$	I _{OL} = 100 μA			0.2	V
			I _{OL} = 34 mA			0.65	· ·
II.	TTLIN/	$V_{CC} = 5.25V$	$V_{I} = 5.25V$			5	
	Control Pins		$V_I = 0V$			-5	μΑ
	GTLPIN	$V_{CC} = 5.25V$	$V_I = V_{TT}$			5	
			$V_I = 0$			-5	μΑ
I _{OFF}	TTLIN	$V_{CC} = 0$	V_1 or $V_0 = 0V$ to 5.25V			100	μΑ
I _{OZH}	OAn Port	$V_{CC} = 5.25V$	V _O = 5.25V			5	μΑ
	OBn Port		V _O = 1.5V			5	
I _{OZL}	OAn Port	$V_{CC} = 5.25V$	V _O = 0			-5	μA
I _{CC}	OAn or	$V_{CC} = 5.25V$	Outputs HIGH		7	18	
	OBn Ports		Outputs LOW		7	20	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled	T	7	20	1
ΔI_{CC}	TTLIN	$V_{CC} = 5.25V$	$V_{I} = V_{CC} - 2.1$			6	mA

GTLP6C816

www.fairchildsemi.com

GTLP6C816

DC Electrical Characteristics (Continued)

Symbol		Test Conditions	Min	Typ (Note 4)	Мах	Units
C _{IN}	Control Pins/GTLPIN/ TTLIN	$V_I = V_{CC} \text{ or } 0$		3.7		pF
C _{OUT}	OAn Port	$V_I = V_{CC} \text{ or } 0$		7		рF
	OBn Port	$V_I = V_{CC} \text{ or } 0$		7		p

Note 4: All typical values are at $V_{CC}=5.0V$ and $T_A=25^\circ C.$

Note 5: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted to accommodate backplane impedances other than 50 Ω , within the boundaries of not exceeding the DC Absolute I_{OL} ratings. Similarly V_{REF} can be adjusted to compensate for changes in V_{TT}.

AC Electrical Characteristics

Over recommended range of supply voltage and operating free air temperature. V_{REF} = 1.0V (unless otherwise noted). C_L = 30 pF for OBn Port and C_L = 50 pF for OAn Port.

Symbol	From	From To Min Ty		Тур	Max	Unite
	(Input)	(Output)		(Note 6)		Units
t _{PLH}	TTLIN	OBn	1.5	3.8	6.0	20
t _{PHL}			1.5	2.8	5.0	115
t _{PLH}	OEB	OBn	1.5	6.4	10.5	25
t _{PHL}			1.5	3.2	6.0	115
t _{RISE}	Transition Time, OB Outputs (20% to 80%)			2.3		ns
t _{FALL}	Transition Time, OB outputs (20% to 80%)			2.3		ns
t _{RISE}	Transition Time, OA outputs (10% to 90%)			2.0		ns
t _{FALL}	Transition Time, OA outputs (10% to 90%)			2.0		ns
t _{PZH} , t _{PZL}	OEA	OAn	0.5	3.6	6.5	20
t _{PLZ} , t _{PHZ}			0.5	3.8	6.5	115
t _{PLH}	GTLPIN	OAn	1.5	4.4	6.5	20
t _{PHL}			1.5	4.0	6.0	115
t _{OSHL} , t _{OSLH} (Note 7)	Common E	Edge Skew		0.2	1.0	ns

Note 6: All typical values are at V_{CC} = 5.0V and T_A = 25°C.

Note 7: Skew specs are given for specific worst case V_{CC} Temp. Skew values between the OBn outputs could vary on the backplane due to loading and impedance seen by the device.

GTLP6C816

www.fairchildsemi.com

www.fairchildsemi.com