imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

H11AA1, H11AA2, H11AA3, H11AA4 H11AA1X, H11AA2X, H11AA3X, H11AA4X

A.C. INPUT PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

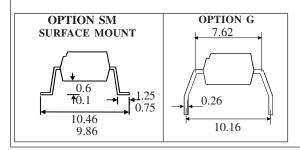
APPROVALS

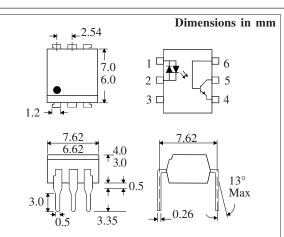
• UL recognised, File No. E91231

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form : -
 - STD
 - -G form
 - SMD approved to CECC 00802

DESCRIPTION


The H11AA series of optically coupled isolators consist of two infrared light emitting diodes connected in inverse parallel and NPN silicon photo transistor in a standard 6 pin dual in line plastic package.


FEATURES

- Options :-
- 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage $(5.3kV_{RMS}, 7.5kV_{PK})$
- AC or polarity insensitive input
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Telephone sets, Telephone exchangers
- Signal transmission between systems of different potentials and impedances

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature	-55° C to $+125^{\circ}$	°C
Operating Temperature	-30° C to $+100$	°C
Lead Soldering Temperature		
(1/16 inch (1.6mm) from case for	or 10 secs) 26	0°C

INPUT DIODE

Forward Current±50mAPower Dissipation70mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	35V
Collector-base Voltage BV _{CBO}	35V
Emitter-collector Voltage BV _{ECO}	6V
Emitter-base Voltage BV _{EBO}	6V
Collector Current	50mA
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation _____ 200mW (derate linearly 4.67mW/°C above 25°C)

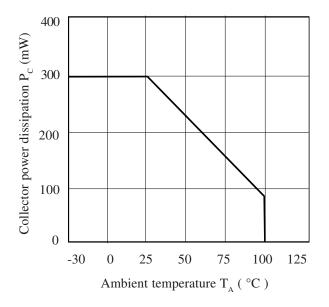
ISOCOM COMPONENTS LTD

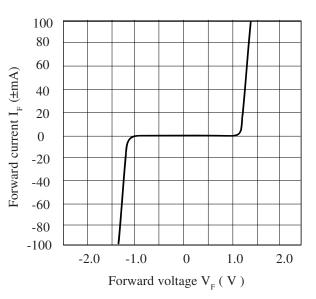
Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

26/11/08

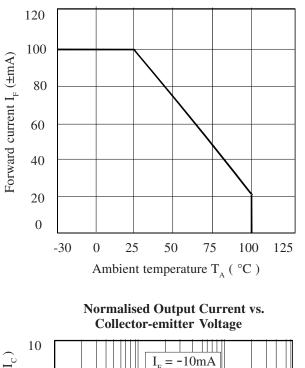
DB92296

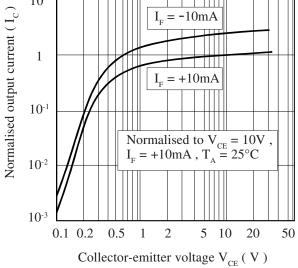
	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F)		1.2	1.5	V	$I_F = \pm 10 \text{mA}$
Output	Collector-emitter Breakdown (BV _{CEO}) (note 2)	35			V	$I_c = 0.1 \text{mA}$
	Collector-base Breakdown (BV_{CBO})	35			V	$I_{c} = 100 \mu A$
	Emitter-base Breakdown (BV_{EBO})	6			V	$I_{\rm E} = 100 \mu A$
	$Emitter-collector Breakdown(BV_{ECO})$	6			V	$I_{E} = 10 \mu A$
	Collector-emitter Dark Current (I_{CEO})			100	nA	$V_{CE} = 20V$
Coupled	Current Transfer Ratio (CTR) (note 2)					
-	H11AA4	100			%	± 10 mAI _F , 10V V _{CE}
	H11AA3	50			%	$\pm 10 \text{mAI}_{\text{F}}$, 10V V _{CE}
	H11AA1	20			%	$\pm 10 \text{mAI}_{\text{F}}$, 10V V _{CE}
	H11AA2	10			%	± 10 mAI _F , 10V V _{CE}
	Collector-emitter Saturation VoltageV $_{\rm CE(SAT)}$			0.4	V	± 10 mAI _F , 0.5mAI _C
	Input to Output Isolation Voltage V_{1SO}	5300			V _{RMS}	See note 1
	r	7500			V _{PK}	See note 1
	Input-output Isolation Resistance R _{ISO}	5x10 ¹⁰			Ω	$V_{10} = 500 V (note 1)$
	Rise Time, tr		4		μS	$V_{cE} = 2V, I_{c} = 2mA$
	Fall Time, tf		3		μS	$R_{L} = 100\Omega$

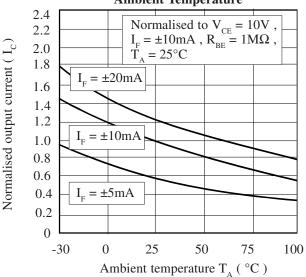

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)


Note 1 Measured with input leads shorted together and output leads shorted together.

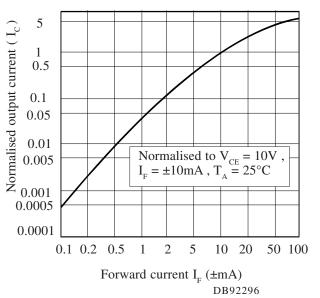
Note 2 Special Selections are available on request. Please consult the factory.


Collector Power Dissipation vs. Ambient Temperature


Forward Current vs. Forward Voltage



Forward Current vs. Ambient Temperature



Normalised Output Current vs. Ambient Temperature

Normalised Output Current vs. Forward Current

