

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

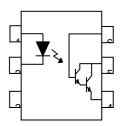
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATASHEET


6 PIN DIP PHOTODARLINGTON PHOTOCOUPLER TIL113, 4NXX, H11BX Series

Features:

- 4NXX series: 4N29, 4N30, 4N31, 4N32, 4N33
- H11BX series: H11B1, H11B2, H11B3, H11B255
- High isolation voltage between input and output (Viso=5000 V rms)
- Creepage distance >7.62 mm
- Operating temperature up to +110 ℃
- · Compact small outline package
- Pb free and RoHS compliant.
- UL approved (No. E214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Emitter
- 5. Collector
- 6. Base

Description

The TIL113, 4NXX and H11BX series of devices each consist of an infrared emitting diode optically coupled to a photo darlington detector.

They are packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Low power logic circuits
- Telecommunications equipment
- Portable electronics
- Interfacing coupling systems of different potentials and impedances

Absolute Maximum Ratings (Ta=25℃)

	Parameter	Symbol	Rating	Unit
Input	Forward current	I _F	60	mA
	Peak forward current (1us, pulse)	I _{FP}	1	А
	Reverse voltage	V _R	6	V
	Power dissipation	Б	120	mW
	No derating required up to Ta = 100 ℃	P _D —	3.8	mW/℃
Output	Power dissipation	Б.	150	mW
	Derating factor (above Ta = 80 °C)	P _C —	6.5	mW/℃
	Collector-Emitter voltage	V _{CEO}	55	V
	Collector-Base voltage	V _{CBO}	55	V
	Emitter-Collector voltage	V _{ECO}	7	V
	Emitter-Base voltage	V _{EBO}	7	V
Total power	r dissipation	P _{TOT}	200	mW
Isolation voltage		V _{ISO}	5000	Vrms
Operating temperature		T _{OPR}	-55~+100	℃
Storage te	mperature	T _{STG}	-55~+125	.€
Soldering t	emperature *2	T _{SOL}	260	∞

Notes:

^{*1} AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

Electro-Optical Characteristics (Ta=25℃ unless specified otherwise)

Input

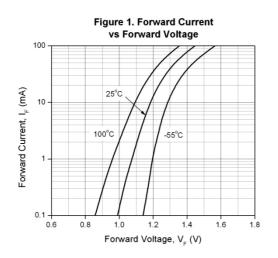
Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Forward Voltage	V _F	-	1.2	1.5	V	$I_F = 10 \text{mA}$ $I_F = 50 \text{mA for H11B3}$
Reverse Current	I _R	-	-	10	μΑ	$V_R = 6V$
Input capacitance	C_in	-	50	-	рF	V = 0, f = 1MHz

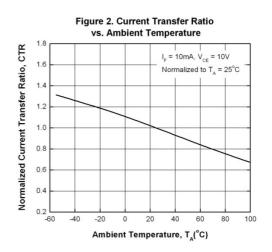
Output

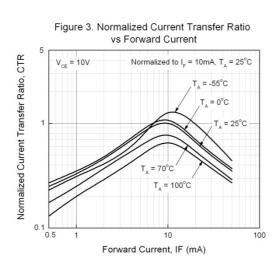
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Collector-Emitter dark current	I _{CEO}	-	-	100	nA	V _{CE} = 10V
Collector-Emitter breakdown voltage	BV_CEO	55	-	-	V	I _c =1mA
Emitter-Collector breakdown voltage	BV_CBO	55	-	-	V	I _C =0.1mA
Emitter-Collector breakdown voltage BV _{ECO}		7	-	-	V	I _E =0.1mA

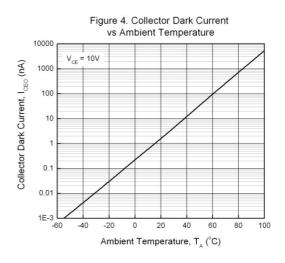
Transfer Characteristics (T_a=25 °C unless specified otherwise)

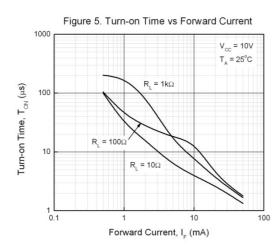
Para	meter	Symbol	Min	Тур.	Max.	Unit	Condition	
Current transfer ratio	4N32 4N33	- - - CTR	500	-	-			
	4N29 4N30		100	-	-	- - - %	$I_F = 10mA, V_{CE} = 10V$	
	4N31		50	-	-			
	H11B1		500	-	-		I _F = 1mA ,V _{CE} = 5V	
	H11B2		200	-	-			
	H11B3	_	100	-	-	_		
	H11B255	_	100	-	-	_	I _F = 10mA ,V _{CE} = 5V	
	TIL113		300	-	-	•	$I_F = 10 \text{mA}, V_{CE} = 1 \text{V}$	


Transfer Characteristics (T_a=25 °C unless specified otherwise)


Paran	Parameter		Min	Тур.	Max.	Unit	Condition
	4N29 4N30 4N32 4N33		-	-	1.0		$I_F = 8mA$, $I_c = 2mA$
Collector-e mitter saturation	4N31 TIL113	V _{CE(sat)}	-	-	1.2	V	I _F = 8mA ,I _c = 2mA
voltage	H11B1 H11B2 H11B3	_	-	-	1.0	_	$I_F = 1 \text{mA}$, $I_C = 1 \text{mA}$
	H11B255	_	-	-	1.0	_	$I_F = 50 \text{mA}, I_C = 50 \text{mA}$
Isolation resi	Isolation resistance		10 ¹¹	-	-	Ω	V _{IO} = 500Vdc
Input-output Capacitance			-	0.8	-	pF	$V_{IO} = 0$, $f = 1MHz$
	H11B1 H11B2 H11B3 H11B255	_ Ton	-	25	-		$V_{CC} = 10V, I_F = 10mA,$ $R_L = 100\Omega$
Turn-on time	4N29 4N30 4N31 4N32 4N33 TIL113		-	-	5	_ μs	$V_{CC} = 10V, I_C = 50mA,$ $I_F = 200mA$
	H11B1 H11B2 H11B3 H11B255	_	-	18	-		$V_{CC} = 10V$, $I_F = 10mA$, $R_L = 100\Omega$
Turn-off time	4N32 4N33 TIL113	Toff	-	-	100	μs	V _{CC} = 10V,
	4N29 4N30 4N31	_	-	-	40	_	$I_C = 50 \text{mA},$ $I_F = 200 \text{mA}$


^{*} Typical values at $T_a = 25 \,^{\circ}\!\text{C}$




Typical Electro-Optical Characteristics Curves

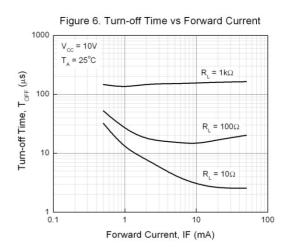




Figure 7. Switching Time Test Circuit & Waveforms

Order Information

Part Number

4NXXY(Z)-V or H11BXY(Z)-V or TIL113Y(Z)-V

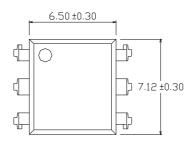
Note

XX = Part No. for 4NX series (29, 30, 31, 32 or 33)

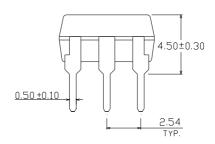
X = Part No. for H11BX series (1, 2, 3 or 255)

Y = Lead form option (S, S1, M or none)

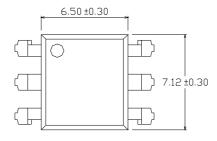
Z = Tape and reel option (TA, TB or none).

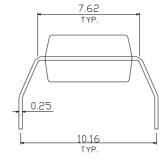

V = VDE safety (optional)

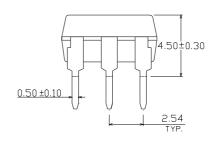
Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel



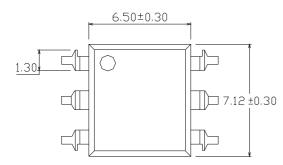
Package Dimension (Dimensions in mm)

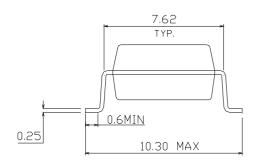

Standard DIP Type

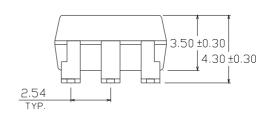


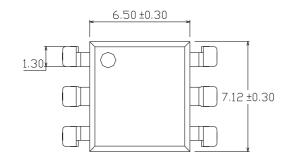


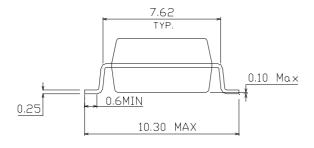
Option M Type

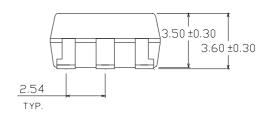




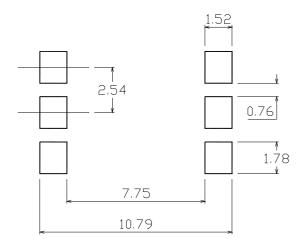


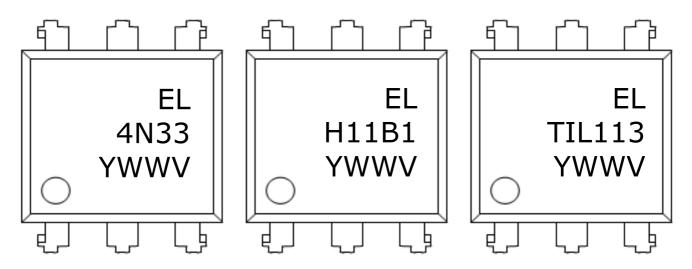

Option S Type





Option S1 Type





Recommended pad layout for surface mount leadform

Device Marking

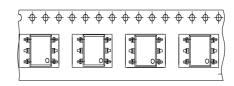
Notes

EL denotes Everlight

4N33

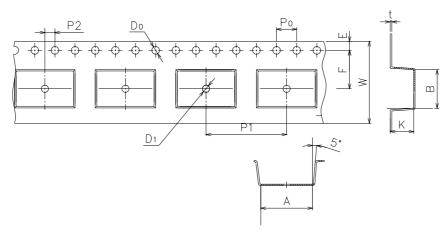
TIL113

H11B1 denotes Part Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE safety (optional)


Tape & Reel Packing Specifications

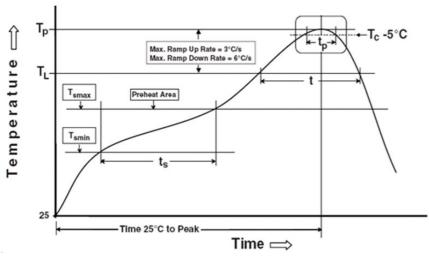
Option TA Option TA Option TA Option TA

Direction of feed from reel


Option TB

Direction of feed from reel

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	7.5±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
Dimension(mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Reference: IPC/JEDEC J-STD-020D

Preheat

150 ℃ Temperature min (T_{smin}) Temperature max (T_{smax}) 200℃ Time (T_{smin} to T_{smax}) (t_s) 60-120 seconds

3 °C/second max Average ramp-up rate $(T_{smax} \text{ to } T_p)$

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t L) 60-100 sec

Peak Temperature (T_P)

Time within 5 $^{\circ}$ C of Actual Peak Temperature: T_P - 5 $^{\circ}$ C

Ramp- Down Rate from Peak Temperature

Time 25 °C to peak temperature

Reflow times

217 ℃

260℃

30 s

6°C /second max.

8 minutes max.

3 times

DATASHEET 6 PIN DIP PHOTODARLINGTON PHOTOCOUPLER TIL113, 4NXX, H11BX Series

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.