

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

DESCRIPTION

The H11C series consists of a gallium-arsenide infrared emitting diode optically coupled with a light activated silicon controlled rectifier in a dual-in-line package

FEATURES

- · High efficiency, low degradation, liquid epitaxial LED
- Underwriters Laboratory (UL) recognized fl File #E90700
- VDE recognized (File #94766) ordering option .300. (e.g., H11C1.300)
- 200V/400V Peak blocking voltage
- High isolation voltage 5300V AC (RMS)

APPLICATIONS

- · Low power logic circuits
- Telecommunications equipment
- Portable electronics
- Solid state relays
- Interfacing coupling systems of different potentials and impedances.
- 10 A, T²L compatible, solid state relay
- 25 W logic indicator lamp driver
- 200 V symmetrical transistor coupler (H11C1, H11C2, H11C3)
- 400 V symmetrical transistor coupler (H11C4, H11C5, H11C6)

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

Parameter	Symbol	Device	Value	Units
TOTAL DEVICE				
Storage Temperature	T _{STG}	All	-55 to +150	°C
Operating Temperature	T _{OPR}	All	-55 to +100	°C
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C
EMITTER				
Continuous Forward Current	I _F	All	60	mA
Reverse Voltage	V _R	All	6	V
Forward Current - Peak (1 µs pulse, 300 pps)	I _{F(pk)}	All	3.0	Α
LED Power Dissipation	D	A.II	100	mW
Derate above 25°C	P _D All		1.33	mW/°C
DETECTOR				
Power Dissipation (ambient)	Б	All	400	mW
Derate linearly above 25°C ambient	P_{D}	All	5.3	mW/°C
Power Dissipation (case)	5		1	W
Derate linearly above 25°C case	P_{D}	All	13.3	mW/°C
Peak Reverse Gate Voltage	V _{GR}	All	6	V
RMS On-State Current	I _{DM (RMS)}	All	300	mA
Peak On-State Current (100 μS, 1% duty cycle)	I _{DM (Peak)}	All	10	А
Surge Current (10ms)	I _{DM (Surge)}	All	5	Α
Peak Forward Voltage	V_{DM}	H11C1, H11C2, H11C3	200	V
Peak Forward Voltage	V_{DM}	H11C4, H11C5, H11C6	400	V

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS								
Parameter	Test Conditions	Symbol	Device	Min	Тур*	Max	Unit	
EMITTER								
Input Forward Voltage	I _F = 10 mA	V _F	All		1.2	1.5	V	
Reverse Leakage Current	V _R = 3 V	I _R	All			10	μΑ	
Capacitance	$V_F = 0 V, f = 1.0 MHz$	CJ	All		50		pF	
DETECTOR								
Off-State Voltage	$R_{GK} = 10k\Omega, T_A = 100^{\circ}C, I_D = 50\mu A$	\ \/	H11C1, H11C2, H11C3	200			_V	
On-State voltage	$R_{GK} = 10k\Omega, T_A = 100^{\circ}C, I_D = 150\mu A$	V _{DM}	H11C4, H11C5, H11C6	400]	
Poverse Veltage	$R_{GK} = 10k\Omega, T_A = 100^{\circ}C, I_R = 50\mu A$	\/	H11C1, H11C2, H11C3	200			V	
Reverse Voltage	$R_{GK} = 10k\Omega, T_A = 100^{\circ}C, I_R = 150\mu A$	V _{RM}	H11C4, H11C5, H11C6	400			V	
On-State Voltage	I _{TM} = 300 mA	V _{TM}	All		1.2	1.3	V	
Off-State Current	$V_{DM} = 200V, T_A = 100^{\circ}C, I_F = 0 \text{ mA},$ $R_{GK} = 10k\Omega$		H11C1, H11C2, H11C3			50	μΑ	
On-State Ourrent	$V_{DM} = 400V, T_A = 100^{\circ}C, I_F = 0 \text{ mA},$ $R_{GK} = 10k\Omega$	I _{DM}	H11C4, H11C5, H11C6			150		
Reverse Current	$V_{RM} = 200 \text{ V}, T_A = 100 \text{ °C}, I_F = 0 \text{ mA},$ $R_{GK} = 10 \text{k}\Omega$	1	H11C1, H11C2, H11C3			50		
Tieverse Guriefft	$V_{RM} = 400 \text{ V}, T_A = 100 \text{ °C}, I_F = 0 \text{ mA},$ $R_{GK} = 10 \text{k}\Omega$	I _{RM}	H11C4, H11C5, H11C6			150	μA	

TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
Characteristics	Test Conditions	Symbol	Device	Min	Тур*	Max	Units
Input Current to Trigger	$V_{AK} = 50 \text{ V}, R_{GK} = 10 \text{ k}\Omega$	· I _{FT}	H11C1,H11C2, H11C4, H11C5			20	
			H11C3, H11C6			30	mA
	$V_{AK} = 100 \text{ V}, R_{GK} = 27 \text{ k}\Omega$		H11C1,H11C2, H11C4, H11C5			11	
			H11C3, H11C6			14	
Coupled dv/dt, input to output (figure 8)		dv/dt	ALL	500			V/µS

^{*}Typical values at $T_A = 25^{\circ}C$

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Тур*	Max	Units
Isolation Voltage	(t = 1 min.) (note 1)	V _{ISO}	5300			V
Isolation Resistance	(note 1) (V _{I-O} = 500 VDC)	R _{ISO}	10 ¹¹			Ω
Isolation Capacitance	(note 1) (f = 1 MHz, V _{I-O} = 0)	C _{I-O}		0.8		pF

^{*}Typical values at $T_A = 25^{\circ}C$

Note

1. For this test, LED pins 1 and 2 are common, and SCR pins 4, 5 and 6 are common.

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

Figure 1. LED Forward Current vs. Forward Voltage

Figure 3. Input Trigger Current vs. Temperature

Figure 4. Off-State Current vs. Temperature

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

Figure 5. Forward Blocking Voltage, $V_{\rm DM}$ vs. Temperature 700 650 V_{DM}, FORWARD BLOCKING VOLTAGE (V) R_{GK} = 10K, 20K 600 550 $R_{GK} = 50K$ 500 R_{GK} = 100K 450 400 350 300 -100 T_A , AMBIENT TEMPERATURE ($^{\circ}$ C)

Figure 7. Holding Current, I_H vs. Temperature 10000 R_{GK} = 300 ohm $R_{GK} = 1K$ IH, HOLDING CURRENT (µA) 1000 R_{GK} = 10K 100 R_{GK} = 27K R_{GK} = 56K 80 -60 100 T_A , AMBIENT TEMPERATURE ($^{\rm O}$ C)

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

TYPICAL APPLICATIONS

10A, T²L COMPATIBLE, SOLID STATE RELAY

Use of the H11C4 for high sensitivity, 5300 V isolation capability, provides this highly reliable solid state relay design. This design is compatible with 74, 74S and 74H series T²L logic systems inputs and 120V AC (H11C1, H11C2, H11C3) or 220V AC (H11C4, H11C5, H11C6) loads up to 10A.

25W, LOGIC INDICATOR LAMP DRIVER

The high surge capability and non-reactive input characteristics of the H11C allow it to directly couple, without buffers, $\mathsf{T}^2\mathsf{L}$ and DTL logic to indicator alarm devices, without danger of introducing noise and logic glitches.

200V/400V SYMMETRICAL TRANSISTOR COUPLER

Use of the high voltage PNP portion of the H11C provides a 400V transistor capable of conducting positive and negative signals with current transfer ratios of over 1%. This function is useful in remote instrumentation, high voltage power supplies and test equipment. Care should be taken not to exceed the H11C 400mW power dissipation rating when used at high voltages.

Fig. 8 Coupled dv/dt - Test Circuit

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

Note

All dimensions are in inches (millimeters)

H11C1	H11C2	H11C3	H11C4	H11C5	H11C6

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and Reel
W	.W	0.4" Lead Spacing
300	.300	VDE 0884
300W	.300W	VDE 0884, 0.4" Lead Spacing
3S	.3\$	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION

Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	Two digit year code, e.g., '03'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

NOTEAll dimensions are in inches (millimeters)

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.