: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China
H11C1 H11C2 H11C3 H11C4

DESCRIPTION

The H11C series consists of a gallium－arsenide infrared emitting diode optically coupled with a light activated silicon controlled rectifier in a dual－in－line package

FEATURES

－High efficiency，low degradation，liquid epitaxial LED
－Underwriters Laboratory（UL）recognized fl File \＃E90700
－VDE recognized（File \＃94766）－ordering option ．300．（e．g．，H11C1．300）
－200V／400V Peak blocking voltage
－High isolation voltage－5300V AC（RMS）

APPLICATIONS

－Low power logic circuits
－Telecommunications equipment
－Portable electronics
－Solid state relays
－Interfacing coupling systems of different potentials and impedances．
－ $10 \mathrm{~A}, \mathrm{~T}^{2} \mathrm{~L}$ compatible，solid state relay
－ 25 W logic indicator lamp driver
－ 200 V symmetrical transistor coupler（H11C1，H11C2，H11C3）
－ 400 V symmetrical transistor coupler（H11C4，H11C5，H11C6）

H11C1 H11C2 H11C3 H11C4 H11C5 H11C6

Parameter	Symbol	Device	Value	Units
TOTAL DEVICE				
Storage Temperature	$\mathrm{T}_{\text {STG }}$	All	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	TOPR	All	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$\mathrm{T}_{\text {SOL }}$	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER Continuous Forward Current	$I_{\text {F }}$	All	60	mA
Reverse Voltage	V_{R}	All	6	V
Forward Current - Peak (1 $\mu \mathrm{s}$ pulse, 300 pps)	$\mathrm{I}_{\mathrm{F}(\mathrm{pk})}$	All	3.0	A
LED Power Dissipation Derate above $25^{\circ} \mathrm{C}$	P_{D}	All	100	mW
			1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR Power Dissipation (ambient) Derate linearly above $25^{\circ} \mathrm{C}$ ambient	$P_{\text {D }}$	All		
			400	mW
			5.3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Power Dissipation (case) Derate linearly above $25^{\circ} \mathrm{C}$ case	$P_{\text {D }}$	All	1	W
			13.3	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Peak Reverse Gate Voltage	V_{GR}	All	6	V
RMS On-State Current	$\mathrm{I}_{\mathrm{DM} \text { (RMS) }}$	All	300	mA
Peak On-State Current (100 $\mu \mathrm{S}, 1 \%$ duty cycle)	IDM (Peak)	All	10	A
Surge Current (10ms)	$\mathrm{I}_{\text {DM (Surge) }}$	All	5	A
Peak Forward Voltage	V_{DM}	H11C1, H11C2, H11C3	200	V
Peak Forward Voltage	V_{DM}	H11C4, H11C5, H11C6	400	V

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified.)
INDIVIDUAL COMPONENT CHARACTERISTICS

Parameter	Test Conditions	Symbol	Device	Min	Typ*	Max	Unit
EMITTER Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	All		1.2	1.5	V
Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	I_{R}	All			10	$\mu \mathrm{A}$
Capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	CJ	All		50		pF
DETECTOR Off-State Voltage	$\mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DM }}$	H11C1, H11C2, H11C3	200			V
	$\mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{~A}$		H11C4, H11C5, H11C6	400			
Reverse Voltage	$\mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$	$\mathrm{V}_{\text {RM }}$	H11C1, H11C2, H11C3	200			V
	$\mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=150 \mu \mathrm{~A}$		H11C4, H11C5, H11C6	400			
On-State Voltage	$\mathrm{I}_{\text {TM }}=300 \mathrm{~mA}$	$\mathrm{V}_{\text {TM }}$	All		1.2	1.3	V
Off-State Current	$\begin{gathered} \mathrm{V}_{\mathrm{DM}}=200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega \end{gathered}$	I_{DM}	H11C1, H11C2, H11C3			50	$\mu \mathrm{A}$
	$\begin{gathered} \mathrm{V}_{\mathrm{DM}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega \end{gathered}$		H11C4, H11C5, H11C6			150	
Reverse Current	$\begin{gathered} \mathrm{V}_{\mathrm{RM}}=200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega \end{gathered}$	I_{RM}	H11C1, H11C2, H11C3			50	$\mu \mathrm{A}$
	$\begin{gathered} \mathrm{V}_{\mathrm{RM}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega \end{gathered}$		H11C4, H11C5, H11C6			150	

TRANSFER CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)							
Characteristics	Test Conditions	Symbol	Device	Min	Typ*	Max	Units
Input Current to Trigger	$\mathrm{V}_{\mathrm{AK}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{GK}}=10 \mathrm{k} \Omega$	$I_{\text {FT }}$	H11C1,H11C2, H11C4, H11C5			20	
			H11C3, H11C6			30	mA
	$\mathrm{V}_{\mathrm{AK}}=100 \mathrm{~V}, \mathrm{R}_{\mathrm{GK}}=27 \mathrm{k} \Omega$		H11C1,H11C2, H11C4, H11C5			11	
			H11C3, H11C6			14	
Coupled dv/dt, input to output (figure 8)		$\mathrm{dv} / \mathrm{dt}$	ALL	500			V/4S

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

H11C1 H11C2 H11C3 H11C4
H11C5

[^0]Note

1. For this test, LED pins 1 and 2 are common, and SCR pins 4,5 and 6 are common.

PHOTO SCR OPTOCOUPLERS

H11C1
 H11C2
 H11C3
 H11C4
 H11C5
 H11C6

Figure 1. LED Forward Current vs. Forward Voltage

Figure 3. Input Trigger Current vs. Temperature

Figure 2. Trigger Current vs Anode-Cathode Voltage

$\mathrm{V}_{\text {AK }}$, ANODE-CATHODE VOLTAGE (V)

Figure 4. Off-State Current vs. Temperature

| H11C1 H11C2 H11C3 | H11C4 | H11C5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Figure 5. Forward Blocking Voltage, V_{DM} vs. Temperature

Figure 6. On-State Characteristics

Figure 7. Holding Current, I_{H} vs. Temperature

Note
All dimensions are in inches (millimeters)

| H11C1 H11C2 H11C3 H11C4 H11C5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	．S	Surface Mount Lead Bend
SD	. SD	Surface Mount；Tape and Reel
W	.W	0.4 Lead Spacing
300	.300	VDE 0884
300 W	.300 W	VDE 0884，0．4＂Lead Spacing
$3 S$	$.3 S$	VDE 0884，Surface Mount
$3 S D$	$.3 S D$	VDE 0884，Surface Mount，Tape and Reel

MARKING INFORMATION

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark（Note：Only appears on parts ordered with VDE option－See order entry table）
4	Two digit year code，e．g．，＇03＇
5	Two digit work week ranging from＇01＇to＇53＇
6	Assembly package code

H11 C1
Carrier Tape Spectications

NOTE

All dimensions are in inches（millimeters）

Reflow Profile（Black Package，No Suffix）

－Peak reflow temperature： $225^{\circ} \mathrm{C}$（package surface temperature） －Time of temperature higher than $183^{\circ} \mathrm{C}$ for $60-150$ seconds
－One time soldering reflow is recommended

H 11 C 1	H 11 C 2	H 11 C 3	H 11 C 4	H 11 C 5	H 11 C 6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN； NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS．

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or （b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

[^0]: *Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

