: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The H11F series consists of a Gallium-Aluminum-Arsenide IRED emitting diode coupled to a symmetrical bilateral silicon photodetector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion-free control of low level AC and DC analog signals. The H11F series devices are mounted in dual in-line packages.

FEATURES

As a remote variable resistor

- $\leq 100 \Omega$ to $\geq 300 \mathrm{M} \Omega$
- $\geq 99.9 \%$ linearity
- $\leq 15 \mathrm{pF}$ shunt capacitance
- $\geq 100 \mathrm{G} \Omega \mathrm{I} / \mathrm{O}$ isolation resistance

As an analog switch

- Extremely low offset voltage
- $60 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$ signal capability
- No charge injection or latch-up
- $\mathrm{t}_{\text {on }}, \mathrm{t}_{\text {off }} \leq 15 \mu \mathrm{~S}$
- UL recognized (File \#E90700)
- VDE recognized (File \#E94766)
- Ordering option ‘300’ (e.g. H11F1.300)

APPLICATIONS

As a variable resistor -

- Isolated variable attenuator
- Automatic gain control
- Active filter fine tuning/band switching

As an analog switch -

- Isolated sample and hold circuit
- Multiplexed, optically isolated A/D conversion

H11F1 H11F2 H11F3

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)				
Parameter	Symbol	Device	Value	Units
TOTAL DEVICE Storage Temperature	$\mathrm{T}_{\text {STG }}$	All	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	TOPR	All	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature	$\mathrm{T}_{\text {SOL }}$	All	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER Continuous Forward Current	$I_{\text {F }}$	All	60	mA
Reverse Voltage	V_{R}	All	5	V
Forward Current - Peak (10 μ s pulse, 1\% duty cycle)	$\mathrm{I}_{\mathrm{F}(\mathrm{pk})}$	All	1	A
LED Power Dissipation $25^{\circ} \mathrm{C}$ Ambient Derate Linearly From $25^{\circ} \mathrm{C}$	P_{D}	All	100 1.33	$\mathrm{mW}^{\mathrm{mW} /{ }^{\circ} \mathrm{C}}$
DETECTOR Detector Power Dissipation @ $25^{\circ} \mathrm{C}$ Derate linearly from $25^{\circ} \mathrm{C}$	P_{D}	All	300	$\frac{\mathrm{mW}}{\mathrm{mW} /{ }^{\circ} \mathrm{C}}$
Breakdown Voltage (either polarity)	BV_{4-6}	H11F1, H11F2 H11F3	$\pm \begin{aligned} & \pm 30 \\ & \pm 15\end{aligned}$	V
Continuous Detector Current (either polarity)	I_{4-6}	All	± 100	mA

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified.)
INDIVIDUAL COMPONENT CHARACTERISTICS

Parameter	Test Conditions	Symbol	Device	Min	Typ*	Max	Unit
EMITTER Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$	V_{F}	All		1.3	1.75	V
Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	All			10	$\mu \mathrm{A}$
Capacitance	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	C_{J}	All		50		pF
OUTPUT DETECTOR Breakdown Voltage	$\mathrm{I}_{4-6}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	BV_{4-6}	H11F1, H11F2	30			V
Either Polarity			H11F3	15			
Off-State Dark Current	$\mathrm{V}_{4-6}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	1_{4-6}	All			50	nA
	$\mathrm{V}_{4-6}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		All			50	$\mu \mathrm{A}$
Off-State Resistance	$\mathrm{V}_{4-6}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	R_{4-6}	All	300			$\mathrm{M} \Omega$
Capacitance	$\mathrm{V}_{4-6}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{f}=1 \mathrm{MHz}$	C_{4-6}	All			15	pF

H11F1 H11F2 H11F3

ISOLATION CHARACTERISTICS

Parameter	Test Conditions	Symbol	Min	Typ＊	Max	Units
Input－Output Isolation Voltage	$\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1 \mathrm{~min}$.	$\mathrm{V}_{I S O}$	5300			Vac（rms）
Isolation Resistance	$\mathrm{V}_{I-O}=500 \mathrm{VDC}$	$\mathrm{R}_{I S O}$	10^{11}			Ω
Isolation Capacitance	$\mathrm{V}_{I-\mathrm{O}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	$\mathrm{C}_{I S O}$			2	pF

TRANSFER CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified．）

DC Characteristics	Test Conditions	Symbol	Device	Min	Typ＊	Max	Units
On－State Resistance	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{4-6}=100 \mu \mathrm{~A}$	R_{4-6}	H11F1			200	Ω
			H11F2			330	
			H11F3			470	
On－State Resistance	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{6-4}=100 \mu \mathrm{~A}$	R_{6-4}	H11F1			200	Ω
			H11F2			330	
			H11F3			470	
Resistance，non－linearity and assymetry	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{4-6}=25 \mu \mathrm{ARMS}, \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$		All			0.1	\％
AC Characteristics	Test Conditions	Symbol	Device	Min	Typ＊	Max	Units
Turn－On Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{4-6}=5 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	All			25	$\mu \mathrm{S}$
Turn－Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{4-6}=5 \mathrm{~V}$	$\mathrm{t}_{\text {off }}$	All			25	$\mu \mathrm{S}$

PHOTO FET OPTOCOUPLERS

H11F1 H11F2 H11F3

Figure 3. LED Forward Voltage vs. Forward Current

IF - LED FORWARD CURRENT - mA

Figure 5. Resistance vs. Temperature

Figure 2. Output Characteristics

Figure 4. Off-state Current vs. Ambient Temperature

H11F1 H11F2 H11F3

TYPICAL APPLICATIONS

AS A VARIABLE RESISTOR
ISOLATED VARIABLE ATTENUATORS

LOW FREQUENCY
@ 10 KHz DYNAMIC RANGE $\approx 70 \mathrm{db}$
FOR $0 \leq I_{F} \leq 30 \mathrm{~mA}$

HIGH FREQUENCY
@ 1 MHz DYNAMIC RANGE $\approx 50 \mathrm{db}$ FOR $0 \leq I_{F} \leq 30 \mathrm{~mA}$

Distortion free attenuation of low level A.C. signals is accomplished by varying the IRED current, I_{F} Note the wide dynamic range and absence of coupling capacitors; D.C. level shifting or parasitic feedback to the controlling function.

AUTOMATIC GAIN CONTROL

This simple circuit provides over 70db of stable gain control for an AGC signal range of from 0 to 30 mA . This basic circuit can be used to provide programmable fade and attack for electronic music.

ACTIVE FILTER FINE TUNING/BAND SWITCHING

The linearity of resistance and the low offset voltage of the H11F allows the remote tuning or band-switching of active filters without switching glitches or distortion. This schematic illustrates the concept, with current to the H11F1 IRED's controlling the filter's transfer characteristic.

AS AN ANALOG SIGNAL SWITCH
ISOLATED SAMPLE AND HOLD CIRCUIT

Accuracy and range are improved over conventional FET switches because the H11F has no charge injection from the control signal. The H11F also provides switching of either polarity input signal up to 30 V magnitude.

MULTIPLEXED, OPTICALLY-ISOLATED A/D CONVERSION

The optical isolation, linearity and low offset voltage of the H11F allows the remote multiplexing of low level analog signals from such transducers as thermocouplers, Hall effect devices, strain gauges, etc. to a single A/D converter.

TEST EQUIPMENT - KELVIN CONTACT POLARITY

In many test equipment designs the auto polarity function uses reed relay contacts to switch the Kelvin Contact polarity. These reeds are normally one of the highest maintenance cost items due to sticking contacts and mechanical problems. The totally solid-State H11F eliminates these troubles while providing faster switching.

H11F1 H11F2 H11F3

Package Dimensions (Surface Mount)

Lead Coplanarity : 0.004 (0.10) MAX

Package Dimensions (0.4" Lead Spacing)

Recommended Pad Layout for Surface Mount Leadform

NOTE
All dimensions are in inches (millimeters)

H11F1 H11F2 H11F3

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	. SD	Surface Mount; Tape and Reel
W	.W	$0.4 "$ Lead Spacing
300	.300	VDE 0884
300 W	.300 W	VDE 0884, 0.4" Lead Spacing
$3 S$	$.3 S$	VDE 0884, Surface Mount
$3 S D$	$.3 S D$	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	Two digit year code, e.g., '03'
5	Two digit work week ranging from '01' to ‘53'
6	Assembly package code

Carrier Tape Specifications

NOTE

All dimensions are in inches (millimeters)
Tape and reel quantity is 1,000 units per reel
Reflow Profile (Black Package, No Suffix)

- Peak reflow temperature: $225^{\circ} \mathrm{C}$ (package surface temperature) - Time of temperature higher than $183^{\circ} \mathrm{C}$ for $60-150$ seconds
- One time soldering reflow is recommended

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
