

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2014

H11G1M, H11G2M 6-Pin DIP High Voltage Photodarlington Optocouplers

Features

- High BV_{CEO}:
 - 100 V Minimum for H11G1M
 - 80 V Minimum for H11G2M
- High Sensitivity to Low Input Current (Minimum 500% CTR at I_F = 1 mA)
- Low Leakage Current at Elevated Temperature (Maximum 100 μA at 80°C)
- Safety and Regulatory Approvals:
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- CMOS Logic Interface
- Telephone Ring Detector
- Low Input TTL Interface
- Power Supply Isolation
- Replace Pulse Transformer

General Description

The H11G1M and H11G2M are photodarlington-type optically coupled optocouplers. These devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington connected phototransistor which has an integral base-emitter resistor to optimize elevated temperature characteristics.

Schematic

ANODE 1 6 BASE CATHODE 2 5 COLLECTOR 4 EMITTER

Figure 1. Schematic

Package Outlines

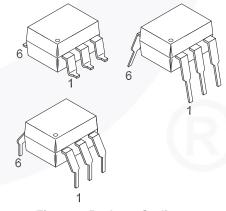


Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC	1594	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
T _S	Case Temperature ⁽¹⁾	175	°C
I _{S,INPUT}	Input Current ⁽¹⁾	350	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	800	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit values – maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Unit	
TOTAL DEVIC	E			
T _{STG}	Storage Temperature	-40 to +125	°C	
T _{OPR}	Operating Temperature	-40 to +100	°C	
T _J	Junction Temperature	-40 to +125	°C	
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C	
В	Total Device Power Dissipation @ T _A = 25°C	290	mW	
P_{D}	Derate Above 25°C	3.5	mW/°C	
EMITTER				
I _F	Forward Input Current 60		mA	
V_{R}	Reverse Input Voltage	erse Input Voltage 6.0		
I _F (pk)	Forward Current – Peak (1 µs pulse, 300 pps)	3.0	Α	
В	LED Power Dissipation @ T _A = 25°C	90	mW	
P_{D}	Derate Above 25°C	1.8	mW/°C	
DETECTOR				
	Collector-Emitter Voltage			
V_{CEO}	H11G1M	100	V	
	H11G2M	80	V	
В	Photodetector Power Dissipation @ T _A = 25°C	200	mW	
P_{D}	Derate Above 25°C	2.67	mW/°C	

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Тур.	Max.	Unit
EMITTER				1			
V _F	Forward Voltage	I _F = 10 mA	All		1.3	1.5	V
$\frac{\Delta V_F}{\Delta T_A}$	Forward Voltage Temperature Coefficient		All		-1.8		mV/°C
BV _R	Reverse Breakdown Voltage	I _R = 10 μA	All	3.0	25		V
	Junction Consoitance	V _F = 0 V, f = 1 MHz	All		50		pF
С	Junction Capacitance	V _F = 1 V, f = 1 MHz	All		65		pF
I _R	Reverse Leakage Current	V _R = 3.0V	All		0.001	10	μΑ
DETECTO	DR .						
D\/	BV _{CEO} Breakdown Voltage Collector to Emitter	I _C = 1.0 mA, I _F = 0	H11G1M	100			V
D V CEO			H11G2M	80			V
D\/	Collector to Base	I _C = 100 μA	H11G1M	100			V
BV _{CBO}	Collector to base		H11G2M	80			V
BV _{EBO}	Emitter to Base		All	7	10		V
	Leakage Current Collector to Emitter	V _{CE} = 80 V, I _F = 0	H11G1M			100	nA
		V _{CE} = 60 V, I _F = 0	H11G2M			100	nA
I _{CEO}		V _{CE} = 80 V, I _F = 0, T _A = 80°C	H11G1M			100	μA
		V _{CE} = 60 V, I _F = 0, T _A = 80°C	H11G2M			100	μA

Transfer Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.	Max.	Unit
EMITTER					<u></u>		
CTR Current Transfer Ratio,	I _F = 10 mA, V _{CE} = 1 V	All	100 (1000)			mA (%)	
	Collector to Emitter	I _F = 1 mA, V _{CE} = 5 V	All	5 (500)			mA (%)
\/	V Cotymetics Volters	I _F = 16 mA, I _C = 50 mA	All		0.85	1.0	V
V _{CE(SAT)} Saturation Voltage		I _F = 1 mA, I _C = 1 mA	All		0.75	1.0	V
SWITCHING	TIMES			•			
t _{ON}	Turn-on Time	$R_L = 100 \Omega, I_F = 10 \text{ mA},$	All		5		μs
t _{OFF}	Turn-off Time	V_{CE} = 5 V, f \leq 30 Hz, Pulse Width \leq 300 µs	All		100		μs

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170			VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz		0.2		pF
R _{ISO}	Isolation Resistance	V _{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹			Ω

Typical Performance Curves

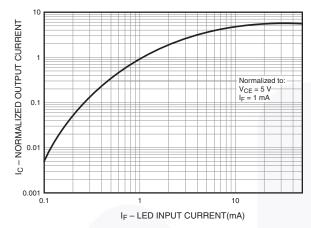


Figure 3. Output Current vs. Input Current

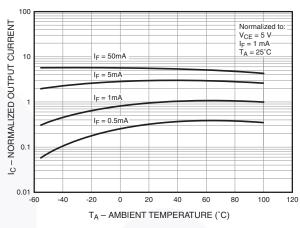


Figure 4. Normalized Output Current vs. Temperature

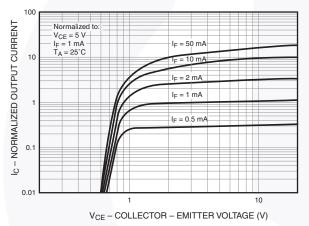


Figure 5. Output Current vs. Collector-Emitter Voltage

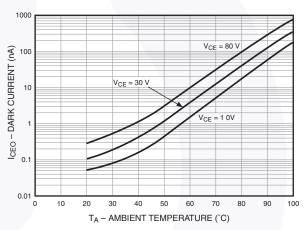


Figure 6. Collector-Emitter Dark Current vs. Ambient Temperature

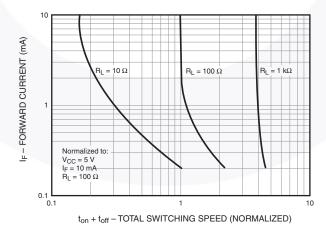


Figure 7. Input Current vs. Total Switching Speed (Typical Values)

Reflow Profile

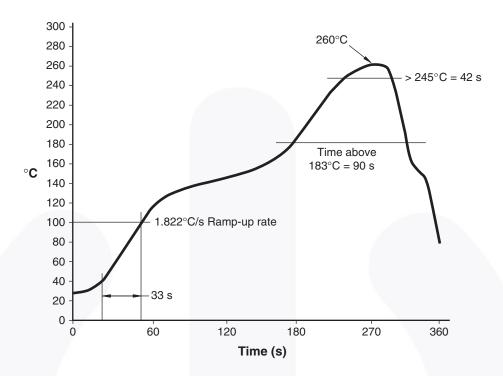


Figure 8. Reflow Profile

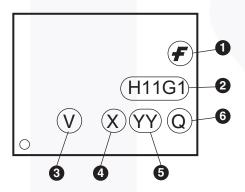
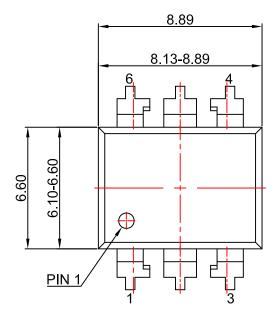
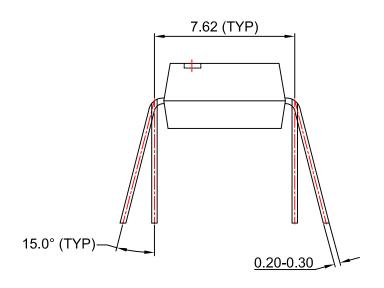
Ordering Information

Part Number	Package	Packing Method
H11G1M	DIP 6-Pin	Tube (50 Units)
H11G1SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
H11G1SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
H11G1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11G1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11G1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
H11G1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

2. The product orderable part number system listed in this table also applies to the H11G2M device.

Marking Information

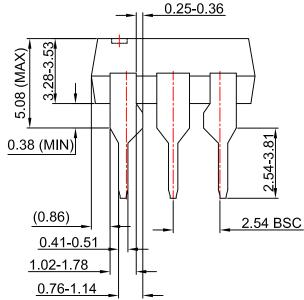
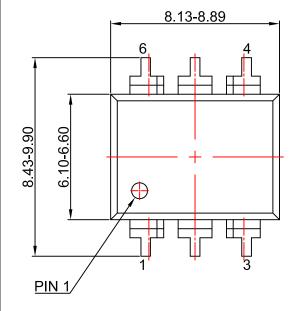
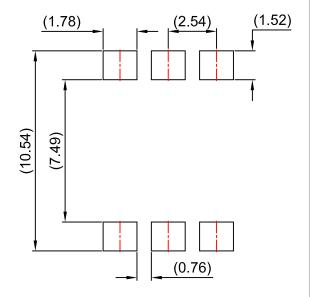

Figure 9. Top Mark

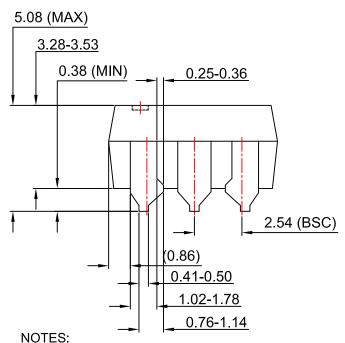
Table 1. Top Mark Definitions

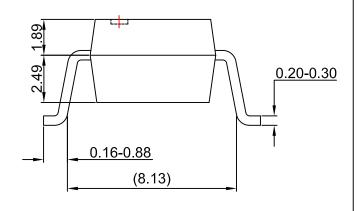
1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "4"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

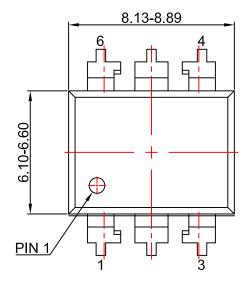


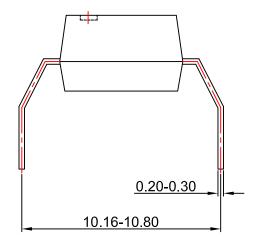


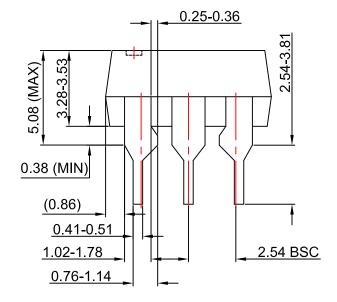
NOTES:


- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.




LAND PATTERN RECOMMENDATION





- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06CREV4.

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative