

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

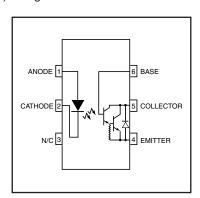
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

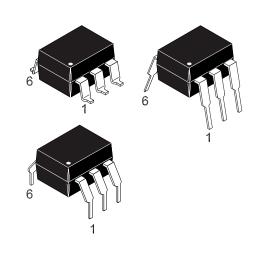
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DESCRIPTION

The H11GX series are photodarlington-type optically coupled optocouplers. These devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington connected phototransistor which has an integral base-emitter resistor to optimize elevated temperature characteristics.


H11G1 H11G2 H11G3


FEATURES

- High BV_{CEO}
- Minimum 100 V for H11G1
- Minimum 80 V for H11G2
- Minimum 55 V for H11G3
- High sensitivity to low input current Minimum 500 percent CTR at I_F = 1 mA
- Low leakage current at elevated temperature (maximum 100 μA at 80°C)
- Underwriters Laboratory (UL) recognized File# E90700

APPLICATIONS

- CMOS logic interface
- Telephone ring detector
- Low input TTL interface
- Power supply isolation
- Replace pulse transformer

NOTEAll dimensions are in inches (millimeters)

ABSOLUTE MAXIMUM RATINGS					
Parameter	Symbol	Value	Units		
TOTAL DEVICE	_	55 to 1450	00		
Storage Temperature	T _{STG}	-55 to +150	°C		
Operating Temperature	T _{OPR}	-55 to +100	°C		
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C		
Total Device Power Dissipation @ T _A = 25°C		260	mW		
Derate above 25°C	P_{D}	3.5	mW/°C		
Input-Output Isolation Voltage	V _{ISO}	5300	Vac(rms)		
EMITTER		00	mA		
Forward Input Current	I _F	60			
Reverse Input Voltage	V _R	6.0	V		
Forward Current - Peak (1µs pulse, 300pps)	I _F (pk)	3.0	А		
LED Power Dissipation @ T _A = 25°C	Б	100	mW		
Derate above 25°C	P_{D}	1.8	mW/°C		
DETECTOR					
Collector-Emitter Voltage					
H11G1	V _{CEO}	100	V		
H11G2		80			
H11G3		55			
Detector Power Dissipation @ T _A = 25°C	Б.	200	mW		
Derate above 25°C	P _D	2.67	mW/°C		

H11G1, H11G2, H11G3

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS								
Characteristic	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit	
EMITTER Forward Voltage	(I _F = 10 mA)	V _F	ALL		1.3	1.50	V	
Forward Voltage Temp. Coefficient		$\frac{\Delta V_F}{\Delta T_A}$	ALL		-1.8		mV/°C	
Reverse Breakdown Voltage	(I _R = 10 μA)	BV _R	ALL	3.0	25		V	
Lunction Conneitance	$(V_F = 0 V, f = 1 MHz)$	CJ	ALL		50		pF	
Junction Capacitance	$(V_F = 1 V, f = 1 MHz)$		ALL		65		pF	
Reverse Leakage Current	$(V_{R} = 3.0 \text{ V})$	I _R	ALL		0.001	10	μΑ	
DETECTOR			H11G1	100				
Breakdown Voltage	$(I_C = 1.0 \text{ mA}, I_F = 0)$	BV _{CEO}	H11G2	80			1	
Collector to Emitter			H11G3	55				
	(I _C = 100 μA)	BV _{CBO}	H11G1	100			V	
Collector to Base			H11G2	80				
			H11G3	55				
Emitter to Base		BV _{EBO}	ALL	7	10			
	$(V_{CE} = 80 \text{ V}, I_{F} = 0)$	I _{CEO}	H11G1				nA	
Lookogo Current	$(V_{CE} = 60 \text{ V}, I_{F} = 0)$		H11G2			100		
Leakage Current	$(V_{CE} = 30 \text{ V}, I_{F} = 0)$		H11G3					
Collector to Emitter	$(V_{CE} = 80 \text{ V}, I_F = 0, T_A = 80^{\circ}\text{C})$		1	H11G1			100	
	$(V_{CE} = 60 \text{ V}, I_F = 0, T_A = 80^{\circ}\text{C})$		H11G2			100	μΑ	

TRANSFER CHARACTERISTICS							
DC Characteristic	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
EMITTER Current Transfer Ratio Collector to Emitter	$(I_F = 10 \text{ mA}, V_{CE} = 1 \text{ V})$	CTR	H11G1/2	100 (1000)			mA (%)
	$(I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V})$		H11G1/2 H11G3	5 (500) 2 (200)			
Saturation Voltage	$(I_F = 16 \text{ mA}, I_C = 50 \text{ mA})$		H11G1/2		0.85	1.0	
	$(I_F = 1 \text{ mA}, I_C = 1 \text{ mA})$	V _{CE (SAT)}	H11G1/2		0.75	1.0	V
	$(I_F = 20 \text{ mA}, I_C = 50 \text{ mA})$		H11G3		0.85	1.2	

TRANSFER CHARACTERISTICS							
Characteristic	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
SWITCHING TIM	IES $(R_{l} = 100 \ \Omega, \ l_{F} = 10 \ mA)$	+	ALL		5		
Turn-on Time	(nL = 100 32, if = 10 IIIA)	t _{on}	ALL		5		μs
Turn-off Time	(V _{CE} = 5 V) Pulse Width \leq 300 μ s, f \leq 30 Hz)	t _{off}	ALL		100		

^{**} All typical values at $T_A = 25$ °C

H11G1, H11G2, H11G3

Fig. 1 Output Current vs. Input Current

Normalized to:

VCE = 5 V

IF = 1 mA

Fig. 2 Normalized Output Current vs. Temperature 100 Ic - NORMALIZED OUTPUT CURRENT Normalized to: $V_{CE} = 5 V$ $I_F = 1 \text{ mA}$ $T_A = 25^{\circ}\text{C}$ 50 mA = 1 mA $= 0.5 \, \text{mA}$ 0.01 -60 -40 20 40 80 100 120 TA - AMBIENT TEMPERATURE (°C)

Fig. 3 Output Current vs. Collector - Emitter Voltage

IF - LED INPUT CURRENT(mA)

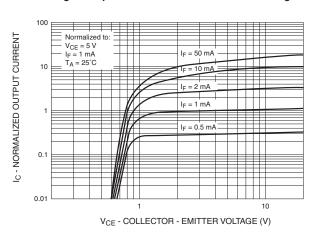
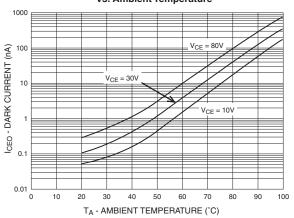
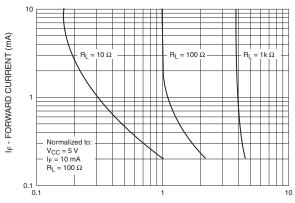
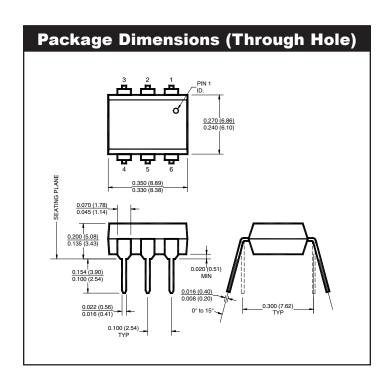
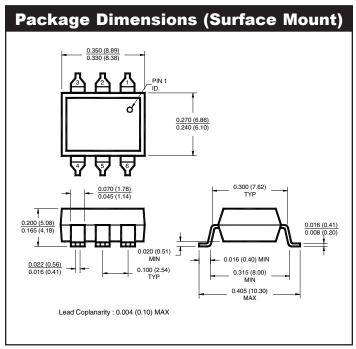
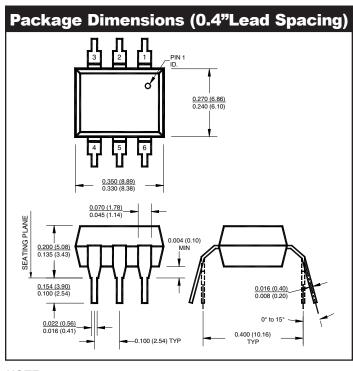


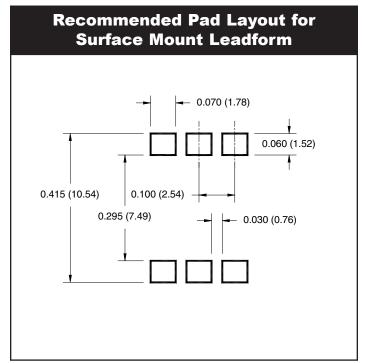
Fig. 4 Collector-Emitter Dark Current vs. Ambient Temperature

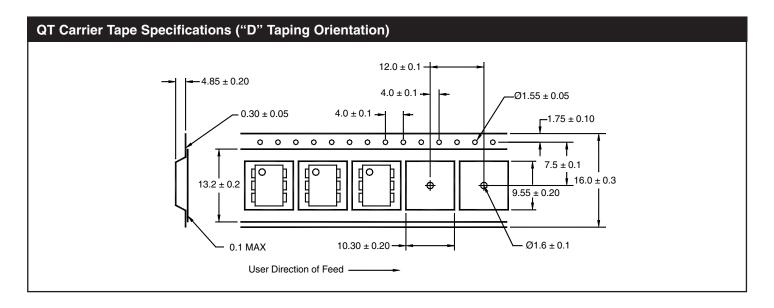

Fig. 5 Input Current vs. Total Switching Speed (Typical Values)




 $t_{\mbox{\scriptsize on}}$ + $t_{\mbox{\scriptsize off}}$ - TOTAL SWITCHING SPEED (NORMALIZED)



H11G1, H11G2, H11G3


NOTEAll dimensions are in inches (millimeters)

H11G1, H11G2, H11G3

ORDERING INFORMATION

Option	Order Entry Identifier	Description		
S	.S	Surface Mount Lead Bend		
SD	.SD	Surface Mount; Tape and reel		
W	.W	0.4" Lead Spacing		
300	.300	VDE 0884		
300W	.300W	VDE 0884, 0.4" Lead Spacing		
3S	.3\$	VDE 0884, Surface Mount		
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel		

NOTE

All dimensions are in millimeters

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.