

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

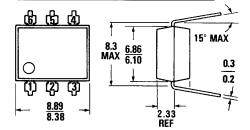
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

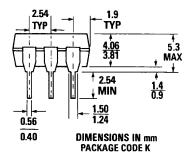
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

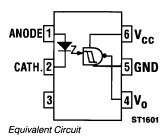
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





HIGH-SPEED AIGAAS SCHMITT TRIGGER OPTOCOUPLERS


H11N1 H11N2 H11N3

PACKAGE DIMENSIONS

ST1603A

TOTAL PACKAGE

DESCRIPTION

The H11N series has a medium-to-high speed integrated circuit detector optically coupled to a gallium-aluminum-arsenide infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open collector output for maximum application flexibility.

FEATURES & APPLICATIONS

- High data rate, 5 MHz typical (NRZ)
- Free from latch up and oscillation throughout voltage and temperature ranges
- Microprocessor compatible drive
- Logic compatible output sinks 16 mA at 0.5 V maximum
- Guaranteed on/off threshold hysteresis
- High common mode transient immunity 2000 V/µs minimum
- Fast switching: t_r, t_f=10 ns typical
- Wide supply voltage capability, compatible with all popular logic systems
- Underwriters Laboratory (UL) recognized file #E90700
- Logic to logic isolator
- Programmable current level sensor
- Line receiver—eliminates noise and transient problems
- Logic level shifter—couples TTL to CMOS
- A.C. to TTL conversion—square wave shaping
- Isolated power MOS driver for power supplies
- Interfaces computers with peripherals

ABSOLUTE MAXIMUM RATINGS

Storage temperature55°C to 125°C Operating temperature25°C to 85°C Lead solder temperature 260°C for 10 sec
INPUT DIODE Power dissipation (25°C ambient)

DETECTOR

Power dissipation (at 25°C ambient) 150 mW
Derate linearly (above 25°C ambient) 5 mW/°C
V_{45} allowed range 0 to 16 V
$V_{\mbox{\tiny 65}}$ allowed range 0 to 16 V
I ₄ output current 50 mA

HIGH-SPEED AIGAAS SCHMITT TRIGGER OPTOCOUPLERS

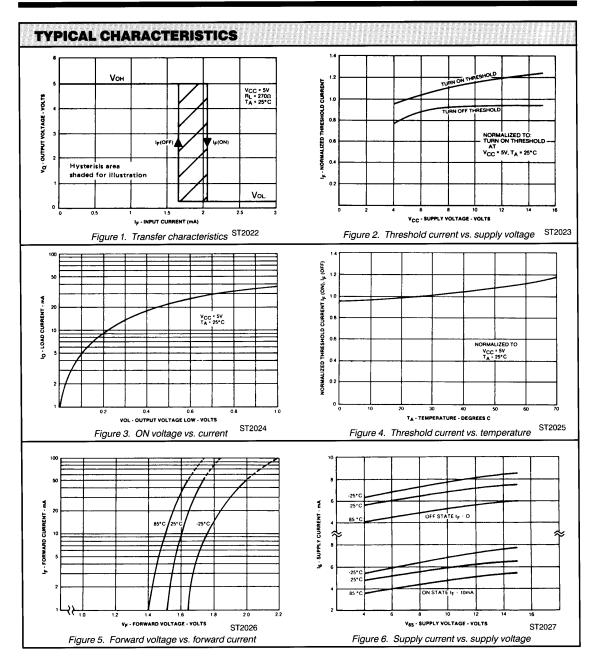
ELECTRICAL CHARACTERISTICS (T_A= 0-70°C Unless Otherwise Specified) Note 1

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE						
Forward voltage	V_{F}		1.6	2.0	V	$I_F = 10 \text{ mA}$
	$V_{\scriptscriptstyle F}$	0.75	1.45		٧	$I_F=0.3 \text{ mA}$
Reverse current	I _R			10	μΑ	V _R =5 V, T _A =25°C
	I _R			100	μΑ	V _R =5 V, T _A =100°C
Capacitance	C,			100	pF	V=0 V, f=1 MHz
OUTPUT DETECTOR						
Operating voltage range	V_{cc}	4		15	V	
Supply current	I _{6(off)}		5.5	10	mA	I _F =0, V _{cc} =5 V
Output current, high	I _{OH}			100	μΑ	I _F =0.3 mA, V _{CC} =V _O =15

CHARACTERISTIC	;	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Supply current		I _{6(on)}		5	10	mA	I_F =10 mA, V_{cc} =5 V
Output voltage, low		V _{oL}		0.3	0.5	V	R_L =270 Ω , V_{cc} =5 V , I_F = $I_{F(on)}$ max.
Turn-on threshold current	(H11N1)	I _{F(on)}	0.8		. 3.2	mA	R _L =270 Ω, V _{cc} =5 V
	(H11N2)	I _{F(on)}	2.3		5.0	mA	R _L =270 Ω, V _{CC} =5 V
	(H11N3)	I _{F(on)}	4.1		10.0	mA	R _L =270 Ω, V _{cc} =5 V
Turn-off threshold current		I _{F(off)}	0.3	1.5		mA	R _L =270 Ω, V _{CC} =5 V
Hysteresis ratio		I _{F(off)} /I _{F(on)}	0.65	0.8	0.95		R _L =270 Ω, V _{cc} =5 V

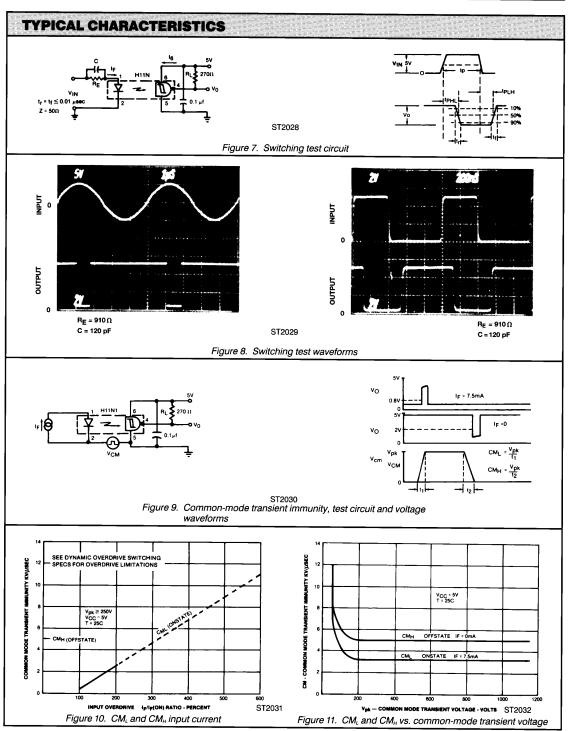
HIGH-SPEED AIGAAS SCHMITT TRIGGER OPTOCOUPLERS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
SWITCHING SPEED (Figures	7&8)					
Propagation delay, high to low	t _{PHL}		150	330	ns	C=120 pF, t _p =1 μs, R _ε : Note 4
Rise time	t,		10		ns	C=120 pF, t _p =1 μs, R _E : Note 4
Propagation delay, low to high	t _{PLH}		150	330	ns	C=120 pF, t _p =1 μs, R _E : Note 4
Fall time	t,		15		ns	C=120 pF, t _p =1 μs, R _E : Note 4
Data rate			5		MHz	Note 3
OVERDRIVE SWITCHING (FIG	URES 7&8),	NOTE 2				
Turn-off time	t _{on}		0.2	0.5	μs	C=O, R _L =270 Ω, I _F (MAX) H11N1: 5 mA H11N2: 10 mA H11N3: 20 mA
TRANSIENT IMMUNITY (FIGU	RE 9)					
Common mode transient immunity	СМн	±2000	±10000		V/μs	V_{pk} =50 V, V_{cc} =5 V, R_L =270 Ω , I_F =0
Common mode transient immunity	CML	±2000	±10000		V/μs	$V_{pk} = 50 \text{ V}, V_{CC} = 5 \text{ V}, \\ R_L = 270 \Omega, I_F = 0$


ISOLATION CHA	RACTERIST	ics				
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Surge isolation voltage	V _{iso}	7500			V_{peak}	1 Minute
Surge isolation voltage	V _{ISO}	5300			V _{RMS}	1 Minute

Notes

- All measurements are with 100nF bypass capacitor from pin 6 to pin 5.
 Steady overdrive increases t_{st}. Use of a large R_ε and a small C as in figure 7 is preferred over overdrive current.
 Maximum data rate will vary depending on the bias conditions and is usually highest when R_ε and C are matched to I_{F,000} and V_{CC} is between 5 and 15V. With this optimized bias, most units will operate at over 10 MHz, NRZ.
 H11N1: R_ε = 910Ω, H11N2: R_ε = 560Ω, H11N3: R_ε = 240Ω.



OPTOISOLATOR SPECIFICATIONS

OPTOISOLATOR SPECIFICATIONS

HIGH-SPEED AIGAAS SCHMITT TRIGGER OPTOCOUPLERS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.