

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

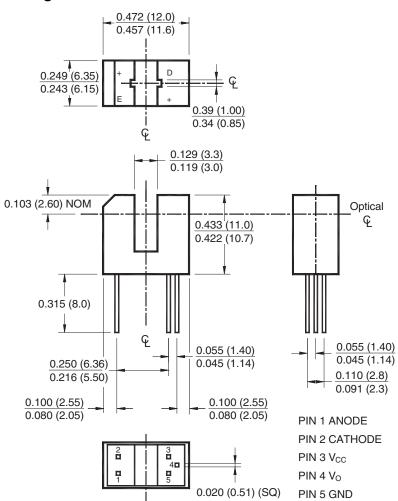
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

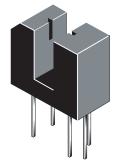
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


H22L Series OPTOLOGIC® OPTICAL INTERRUPTER SWITCH


Features

- Black plastic housing
- Choice of inverter or buffer output functions
- Choice of open-collector or totem-pole output configuration
- No contact switching
- TTL/CMOS compatible output functions

PART NUMBER DEFINITIONS		
H22LTB	Totem-pole, buffer output	
H22LTI	Totem-pole, inverter output	
H22LOB	Open-collector, buffer output	
H22LOI	Open-collector, inverter output	

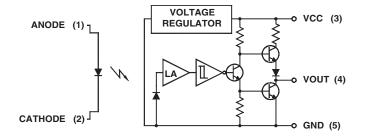
Package Dimensions

NOTES:

- 1. Dimensions for all drawings are in inches (millimeters).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.
- 3. Lead cross section is controlled between .050 (1.27) from the seating plane and the end of the leads.

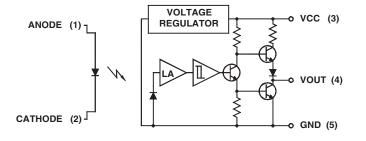
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless otherwise specified)			
Parameter	Symbol	Rating	Units
Operating Temperature	T _{OPR}	-40 to +85	°C
Storage Temperature	T _{STG}	-40 to +85	°C
Soldering Temperature (Iron) ^(3,4,5,6)	T _{SOL-I}	240 for 5 sec	°C
Soldering Temperature (Flow) ^(3,4,6)	T _{SOL-F}	260 for 10 sec	°C
EMITTER			
Continuous Forward Current	I _F	50	mA
Reverse Voltage	V _R	5	V
Power Dissipation ⁽¹⁾	P _D	100	mW
SENSOR			
Continuous Forward Current	I _F	50	mA
Output Current	I _O	50	mA
Supply Voltage	V _{CC}	4.0 to 16	V
Output Voltage	Vo	30	V
Power Dissipation ⁽¹⁾	P _D	150	mW

Part Number	Test Conditions	Symbol	Min.	Тур.	Max	Units
Operating Supply Voltage	V _{CC}	V _{CC}	4.5		16	V
INPUT DIODE						
Forward Voltage	I _F = 20 mA	V_{F}	_		1.7	V
Reverse Leakage Current	V _R = 5 V	I _R	_		10	μΑ
COUPLED						
Operating Supply Current	$I_F = 15 \text{ mA or } 0 \text{ mA}, V_{CC} = 16 \text{ V}$	I _{CC}	_		5	mA
Low Level Output Voltage H22LTB, H22LOB	$I_F = 0$ mA, $V_{CC} = 5$ V, $R_L = 100 \Omega$	V _{OL}	_		0.4	V
Low Level Output Voltage H22LTI, H22LOI	I_F = 15 mA, V_{CC} = 5 V, R_L = 360 Ω	V _{OL}	_		0.4	V
High Level Output Voltage H22LTB	$I_F = 15 \text{ mA}, V_{CC} = 5 \text{ V},$ $I_{OH} = -800 \mu\text{A}$	V _{OH}	2.4		_	V
High Level Output Voltage H22LTI	$I_F = 0 \text{ mA}, V_{CC} = 5 \text{ V},$ $I_{OH} = -800 \mu\text{A}$	V _{OH}	2.4		_	V
High Level Output Current H22LOB	$I_F = 0$ mA, $V_{CC} = 5$ V, $I_{OH} = -800 \mu A$	I _{OH}			100	μΑ
High Level Output Current H22LOI	$I_F = 0 \text{ mA}, V_{CC} = 5 \text{ V}, V_{OH} = 30 \text{ V}$	I _{OH}			100	μΑ
Turn on Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	l _F (+)			15	mA
Turn off Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	I _F (–)	0.50		_	mA
Hysteresis Ratio		I _F (+) / I _F (–)		1.3		
Propagation Delay	V_{CC} = 5 V, R_L = 360 Ω	t _{PLH} , t _{PHL}		5		μs
Output Rise and Fall Time	$V_{CC} = 5 \text{ V}, R_{L} = 360 \Omega$	t _r , t _f		70		ns

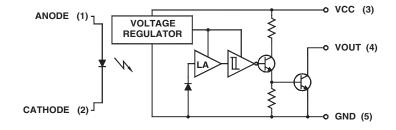

2

NOTES (Applies to Max Ratings and Characteristics Tables.):

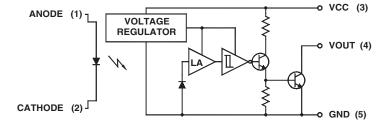
- 1. Derate power dissipation linearly 1.67 mW/°C above 25°C.
- 2. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- 3. RMA flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron 1/16" (1.6mm) from housing.
- 6. As long as leads are not under any stress or spring tension.


INPUT / OUTPUT TABLE			
Part Number	LED	Output	
H22LTB	On	High	
H22LTB	Off	Low	
H22LTI	On	Low	
H22LTI	Off	High	
H22LOB	On	High	
H22LOB	Off	Low	
H22LOI	On	Low	
H22LOI	Off	High	

Circuit Schematics


H22LTB

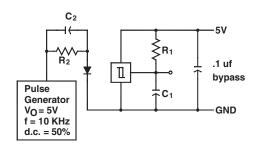
Totem-Pole Output Buffer


H22LTI

Totem-PoleOutput inverter

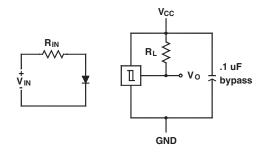
H22LOB

Open-Collector Output Buffer

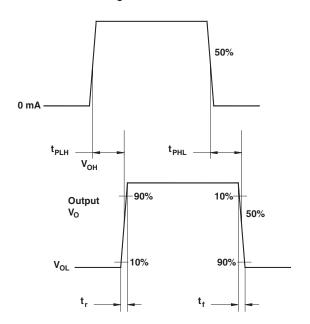


H22LOI

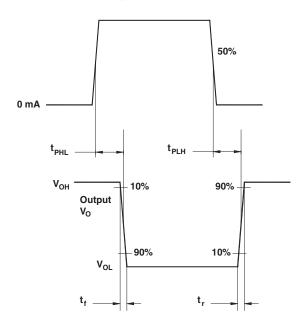
Open-Collector Output Inverter


Circuit Schematics (Continued)

Switching Speed Test Circuit



 $R_1 = 180 \Omega$ $R_2 = 360 \Omega$ $C_1 = 15 \text{ pf}$ $C_2 = 20 \text{ pf}$ C₁ and C₂ include probe and stray wire capacitance


Typical Operating Circuit

Switching Test Curve for Buffers

Switching Test Curve for Inverters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	POWEREDGE™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GTO™ .	MICROWIRE™	QS TM	SyncFET™
EcoSPARK™	HiSeC™	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	i-Lo™	OCXTM	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Series [™]		OPTOLOGIC®	μSerDes™	UltraFET®
Across the board. Around the world.™ The Power Franchise® Programmable Active Droop™		OPTOPLANAR TM PACMAN TM POP TM	SILENT SWITCHER® SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

6

Rev. I12