: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

H Series

Reed Relays

> Features: High Voltage Relay, Open Frame with M4 Screw Mount
> Applications: Test and Medical Equipment \& Others
> Markets: Medical, Test and Measurement \& Others

Customer Options	Switch Model		Unit
Contact Data	69	83	
Rated Power (max.) Any DC combination of V\&A not to exceed their individual max.'s	50	50	V
Switching Voltage (max.) DC or peak AC	10,000	7,500	A
Switching Current (max.) DC or peak AC	3.0	3.0	A
Carry Current (max.) DC or peak AC	5.0	150	mOhm
Contact Resistance (max.) @ 0.5V \& 50mA	150	10	kVDC
Breakdown Voltage (min.) According to EN60255-5	15	3.0	ms
Operating Time (max.) Incl. Bounce; Measured with w/ Nominal Voltage	3.0	1.5	ms
Release Time (max.) Measured with no Coil Excitation	1.5	10^{10}	Ohm
Insulation Resistance (typ.) Rh<45\%, 100V Test Voltage	1	1	pF
Capacitance (typ.) @ 10kHz across open Switch		A	

Engineered Solutions for
Tomorrow

Coil Data		Coil Voltage (nom.)	Coil Resistance (typ.)	Pull-In Voltage (max.)	Drop-Out Voltage (min.)	Nominal Coil Power (typ.)
Contact Form	Switch Mode					
Unit		VDC	Ohm	VDC	VDC	mW
1A	69, 83	12	230	8.4	1	620
		24	700	18	2	822
1B*	69, 83	12	180	8.4	1	800
		24	360	16.8	2	1,600
The Pull-In / Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per ${ }^{\circ} \mathrm{C}$. * Re-closure of Form B may occur if the max. coil voltage is exceeded. Coil polarity on Form B must be observed. Pin 2 is positive.						

Environmental Data		Unit
Shock Resistance (max.) 1/2 sine wave duration 11ms	50	g
Vibration Resistance (max.)	20	g
Operating Temperature	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-35 to 95	${ }^{\circ} \mathrm{C}$
Soldering Temperature (max.) 5 sec. max.	260	${ }^{\circ} \mathrm{C}$

Handling \& Assembly Instructions

> Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay. Protective circuits need to be used.
> External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
> Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
$>\quad$ Wave soldering: maximum $260^{\circ} / 5$ seconds.
> Reflow soldering: Recommendations given by the soldering paste manufacturer need to be considered as well as the temperature limits of other components/processes.

Glossary Contact Form		
Form A	$\mathrm{NO}=$ Normally Open Contacts SPST = Single Pole Single Throw	
Form B	$\mathrm{NC}=$ Normally Closed Contacts SPST = Single Pole Single Throw	
Form C	Changeover SPDT = Single Pole Double Throw	

Life Test Data

*Load increase reduces life expectancy of Reed Switches

