

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Hardware Documentation

Data Sheet

HAL[®] 411

Linear Hall-Effect Sensor IC

Copyright, Warranty, and Limitation of Liability

The information and data contained in this document are believed to be accurate and reliable. The software and proprietary information contained therein may be protected by copyright, patent, trademark and/or other intellectual property rights of Micronas. All rights not expressly granted remain reserved by Micronas.

Micronas assumes no liability for errors and gives no warranty representation or guarantee regarding the suitability of its products for any particular purpose due to these specifications.

By this publication, Micronas does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Commercial conditions, product availability and delivery are exclusively subject to the respective order confirmation.

Any information and data which may be provided in the document can and do vary in different applications, and actual performance may vary over time.

All operating parameters must be validated for each customer application by customers technical experts. Any new issue of this document invalidates previous issues. Micronas reserves the right to review this document and to make changes to the documents content at any time without obligation to notify any person or entity of such revision or changes. For further advice please contact us directly.

Do not use our products in life-supporting systems, aviation and aerospace applications! Unless explicitly agreed to otherwise in writing between the parties, Micronas products are not designed, intended or authorized for use as components in systems intended for surgical implants into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death could occur.

No part of this publication may be reproduced, photocopied, stored on a retrieval system or transmitted without the express written consent of Micronas.

Micronas Trademarks

– HAL

Micronas Patents

Choppered Offset Compensation protected by Micronas patents no. US5260614A, US5406202A, EP052523B1, and EP0548391B1.

Third-Party Trademarks

All other brand and product names or company names may be trademarks of their respective companies.

HAL411

Contents

Page	Section	Title
4	1.	Introduction
4	1.1.	Features
4	1.2.	Marking Code
4	1.3.	Operating Junction Temperature Range
4	1.4.	Hall Sensor Package Codes
4	1.5.	Solderability and Welding
5	2.	Functional Description
5	2.1.	Offset Compensation
6	3.	Specifications
6	3.1.	Outline Dimensions
7	3.2.	Dimensions of Sensitive Area
7	3.3.	Positions of Sensitive Areas
7	3.4.	Absolute Maximum Ratings
7	3.4.1.	Storage and Shelf Life
8	3.5.	Recommended Operating Conditions
8	3.6.	Characteristics
15	4.	Application Notes
15	4.1.	Ambient Temperature
15	4.2.	EMC and ESD
15	4.3.	Application Circuit
18	5.	Data Sheet History

Linear Hall Effect Sensor IC

in CMOS technology

Release Notes: Revision bars indicate significant changes to the previous edition.

1. Introduction

The HAL411 is a Linear Hall Effect Sensor produced in CMOS technology. The sensor includes a temperature-compensated Hall plate with choppered offset compensation, two linear output stages, and protection devices (see Fig. 2–1).

The output voltage is proportional to the magnetic flux density through the hall plate. The choppered offset compensation leads to stable magnetic characteristics over supply voltage and temperature.

The HAL411 can be used for magnetic field measurements, current measurements, and detection of any mechanical movement. Very accurate angle measurements or distance measurements can also be done. The sensor is very robust and can be used in electrically and mechanically hostile environments.

The sensor is designed for industrial and automotive applications and operates in the ambient temperature range from –40 °C up to 100 °C and is available in the SMD-package SOT-89B.

1.1. Features:

- switching offset compensation at 147 kHz
- low magnetic offset
- extremely sensitive
- operates from 4.9 to 5.1 V supply voltage
- overvoltage protection
- reverse voltage protection of V_{DD}-pin
- differential output
- accurate absolute measurements of DC and low frequency magnetic fields
- on-chip temperature compensation
- low 1/f-noise

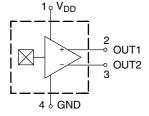
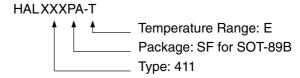


Fig. 1-1: Pin configuration

1.2. Marking Code

All Hall sensors have a marking on the package surface (branded side). This marking includes the name of the sensor and the temperature range.

1.3. Operating Junction Temperature Range


The Hall sensors from Micronas are specified to the chip temperature (junction temperature $T_{i,l}$).

The HAL411 is available in the temperature range "E" only.

E:
$$T_J = -40 \, ^{\circ}\text{C} \text{ to } +100 \, ^{\circ}\text{C}$$

The relationship between ambient temperature (T_A) and junction temperature (T_J) is explained in section 4.1. on page 15.

1.4. Hall Sensor Package Codes

Example: HAL411SF-E

 \rightarrow Type: 411

→ Package: SOT-89B

 \rightarrow Temperature Range: T_J = -40 °C to +100 °C

Hall sensors are available in a wide variety of packaging versions and quantities. For more detailed information, please refer to the brochure: "Ordering Codes for Hall Sensors".

1.5. Solderability and Welding

Soldering

During soldering reflow processing and manual reworking, a component body temperature of 260 $^{\circ}$ C should not be exceeded.

Welding

Device terminals should be compatible with laser and resistance welding. Please note that the success of the welding process is subject to different welding parameters which will vary according to the welding technique used. A very close control of the welding parameters is absolutely necessary in order to reach satisfying results. Micronas, therefore, does not give any implied or express warranty as to the ability to weld the component.

2. Functional Description

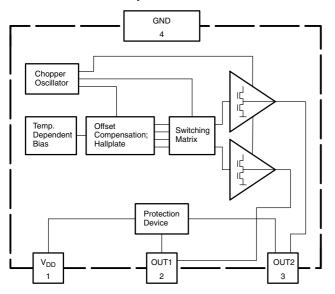


Fig. 2-1: Block diagram of the HAL411 (package outline in top view)

The differential output voltage consists of two components due to the switching offset compensation technique. The average of the differential output voltage represents the magnetic flux density. This component is overlaid by a differential AC signal at a typical frequency of 147 kHz. The AC signal represents the internal offset voltages of amplifiers and hall plates that are influenced by mechanical stress and temperature cycling.

External filtering or integrating measurement can be done to eliminate the AC component of the signal. As a result, the influence of mechanical stress and temperature cycling is suppressed. No adjustment of magnetic offset is needed.

The sensitivity is stabilized over a wide range of temperature and supply voltage due to internal voltage regulation and circuits for temperature compensation.

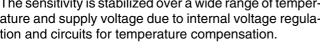
2.1. Offset Compensation (see Fig. 2–2)

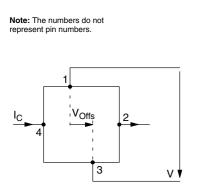
The Hall Offset Voltage is the residual voltage measured in absence of a magnetic field (zero-field residual voltage). This voltage is caused by mechanical stress and can be modeled by a displacement of the connections for voltage measurement and/or current supply.

Compensation of this kind of offset is done by cyclically commuting the connections for current flow and voltage measurement.

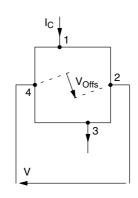
- First cycle:

The hall supply current flows between points 4 and 2. In the absence of a magnetic field, V_{13} is the Hall Offset Voltage (+V_{Offs}). In case of a magnetic field, V₁₃ is the sum of the Hall voltage (V_H) and V_{Offs}.

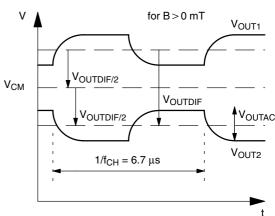

$$V_{13} = V_H + V_{Offs}$$


- Second cycle:

The hall supply current flows between points 1 and 3. In the absence of a magnetic field, V₂₄ is the Hall Offset Voltage with negative polarity (-V_{Offs}). In case of a magnetic field, V₂₄ is the difference of the Hall voltage (V_H) and V_{Offs}.


$$V_{24} = V_H - V_{Offs}$$

In the first cycle, the output shows the sum of the Hall voltage and the offset; in the second, the difference of both. The difference of the mean values of VOLIT1 and V_{OUT2} (V_{OUTDIF}) is equivalent to V_{Hall}.



a) Offset Voltage

b) Switched Current Supply

c) Output Voltage

Fig. 2-2: Hall Offset Compensation

3. Specifications

3.1. Outline Dimensions

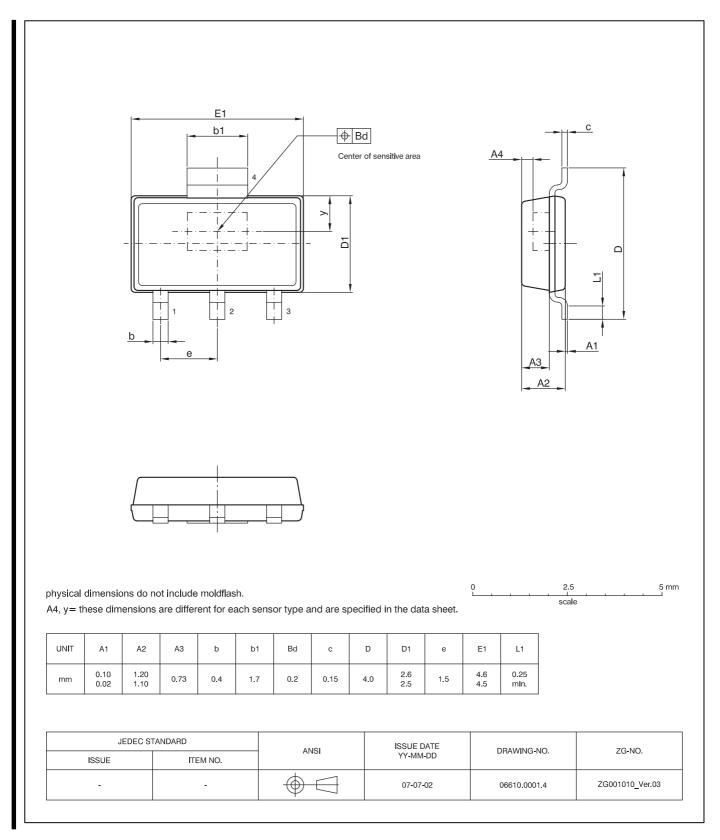


Fig. 3-1:

SOT89B-1: Plastic Small Outline Transistor package, 4 leads

Ordering code: SF

Weight approximately 0.034 g

3.2. Dimensions of Sensitive Area

0.37 mm x 0.17 mm

3.3. Positions of Sensitive Areas

	SOT-89B
У	0.95 mm nominal

3.4. Absolute Maximum Ratings

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods will affect device reliability.

This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute maximum-rated voltages to this circuit.

All voltages listed are referenced to ground (GND).

Symbol	Parameter	Pin No.	Min.	Max.	Unit
V _{DD}	Supply Voltage	1	-12	12	V
Vo	Output Voltage	2, 3	-0.3	12	V
I _O	Continuous Output Current	2, 3	- 5	5	mA
TJ	Junction Temperature Range		-40	170	°C
T _A	Ambient Temperature at V _{DD} = 5 V at V _{DD} = 12 V		_ _	150 125	°C °C

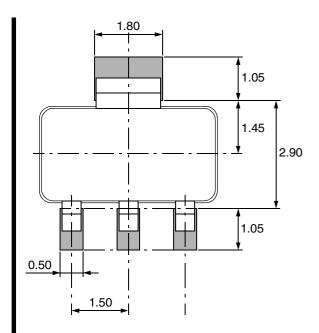
3.4.1. Storage and Shelf Life

The permissible storage time (shelf life) of the sensors is unlimited, provided the sensors are stored at a maximum of 30 °C and a maximum of 85% relative humidity. At these conditions, no Dry Pack is required.

Solderability is guaranteed for one year from the date code on the package.

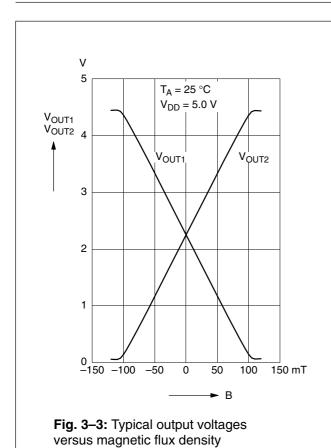
3.5. Recommended Operating Conditions

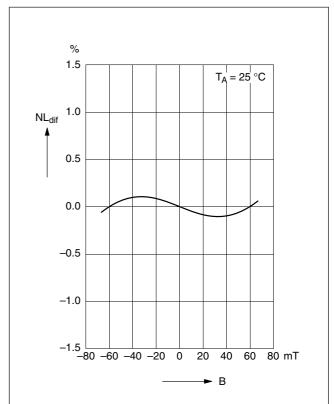
Functional operation of the device beyond those indicated in the "Recommended Operating Conditions/Characteristics" is not implied and may result in unpredictable behavior, reduce reliability and lifetime of the device.

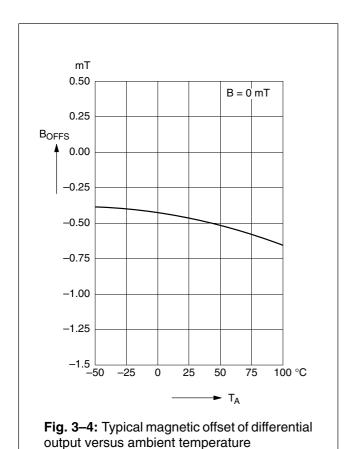

All voltage listed are referenced to ground (GND).

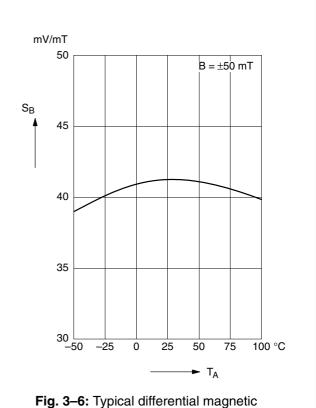
Symbol	Parameter	Pin No.	Min.	Max.	Unit	Remarks
Io	Continuous Output Current	2, 3	-2.25	2.25	mA	T _J = 25 °C
Io	Continuous Output Current	2, 3	-1	1	mA	T _J = 100 °C
C _L	Load Capacitance	2, 3	-	1	nF	
V _{DD}	Supply Voltage	1	4.9	5.1	V	-40 °C ≤ T _J ≤ 100 °C
В	Magnetic Field Range		-50	50	mT	

3.6. Characteristics at $T_J = -40~^{\circ}\text{C}$ to $+100~^{\circ}\text{C}$, $V_{DD} = 4.9~\text{V}$ to 5.1 V, at Recommended Operation Conditions if not otherwise specified in the column "Conditions". Typical characteristics for $T_J = 25~^{\circ}\text{C}$, $V_{DD} = 5~\text{V}$ and -50~mT < B < 50~mT


Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Conditions
I _{DD}	Supply Current	1	11	14.5	17.1	mA	T _J = 25 °C, I _{OUT1,2} = 0 mA
I _{DD}	Supply Current over Temperature Range	1	9	14.5	18.5	mA	I _{OUT1,2} = 0 mA
V_{CM}	Common Mode Output Voltage V _{CM} = (V _{OUT1} + V _{OUT2}) / 2	2, 3	2.1	2.2	2.3	V	I _{OUT1,2} = 0 mA,
CMRR	Common Mode Rejection Ratio	2, 3	-2.5	0	2.5	mV/V	I _{OUT1,2} = 0 mA, CMRR is limited by the in- fluence of power dissipa- tion.
S _B	Differential Magnetic Sensitivity over Temperature Range	2–3	33	42.5	50	mV/mT	-50 mT < B < 50 mT
B _{offset}	Magnetic Offset over Temperature	2–3	-1.5	-0.2	1.5	mT	B = 0 mT, I _{OUT1,2} = 0 mA
$\Delta B_{OFFSET}/\Delta$	Magnetic Offset Change		-25	0	25	μT/K	B = 0 mT, I _{OUT1,2} = 0 mA
BW	Bandwidth (-3 dB)	2–3	-	10	-	kHz	without external Filter ¹⁾
NL _{dif}	Non-Linearity of Differential Output	2–3	-	0.5	2	%	-50 mT < B < 50 mT
NL _{single}	Non-Linearity of Single Ended Output	2, 3	-	2	_	%	
f _{CH}	Chopper Frequency over Temp.	2, 3	-	147	-	kHz	
V _{OUTACpp}	Peak-to-Peak AC Output Voltage	2, 3	-	0.6	1.3	٧	
n _{meff}	Magnetic RMS Differential Broadband Noise	2–3	-	10	_	μТ	BW = 10 Hz to 10 kHz
f _{Cflicker}	Corner Frequency of 1/f Noise	2–3	_	10	_	Hz	B = 0 mT


Symbol	Parameter	Pin No.	Min.	Тур.	Max.	Unit	Conditions
f _{Cflicker}	Corner Frequency of 1/f Noise	2–3	-	100	-	Hz	B = 50 mT
R _{OUT}	Output Impedance	2, 3	-	30	50	Ω	$T_A = 25 ^{\circ}\text{C},$ $I_{OUT1,2} \leq 2.5 \text{mA}$
R _{OUT}	Output Impedance over Temperature	2, 3	-	30	150	Ω	I _{OUT1,2} ≤ 2.5 mA
R _{thJSB} case	Thermal Resistance Junction to Substrate Backside		-	150	200	K/W	Fiberglass Substrate 30 mm x 10 mm x 1.5 mm pad size see Fig. 3–2
1) with external 2 pole filter (f _{3db} = 5 kHz), V _{OUTAC} is reduced to less than 1 mV by limiting the bandwidth							


Fig. 3–2: Recommended footprint SOT89B, Dimensions in mm


Note: All dimensions are for reference only. The pad size may vary depending on the requirements of the soldering process.

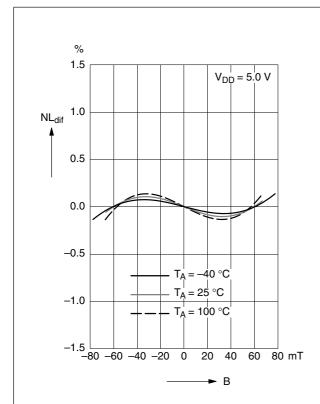


Fig. 3–5: Typical non-linearity of differential output versus magnetic flux density

Fig. 3–6: Typical differential magnetic sensitivity versus ambient temperature

Fig. 3–7: Typical non-linearity of differential output versus magnetic flux density

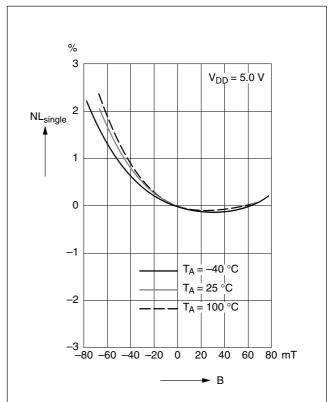
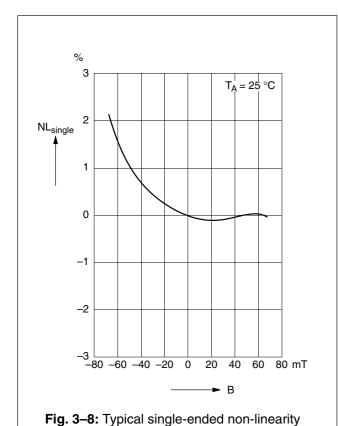
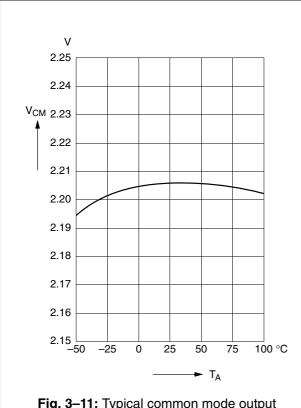



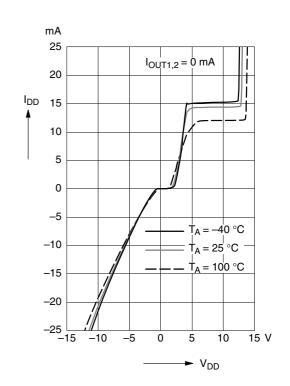
Fig. 3–9: Typical non-linearity of singleended output versus magnetic flux density

kHz 200

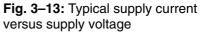
f_{CH} 180

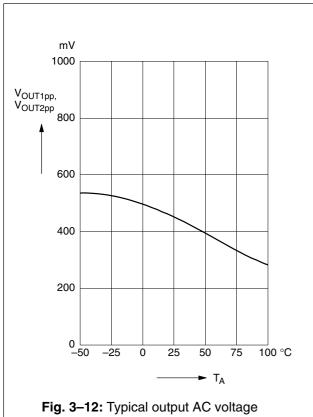
160

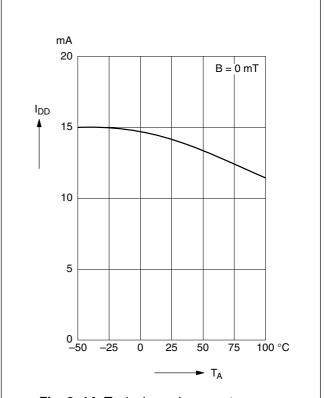


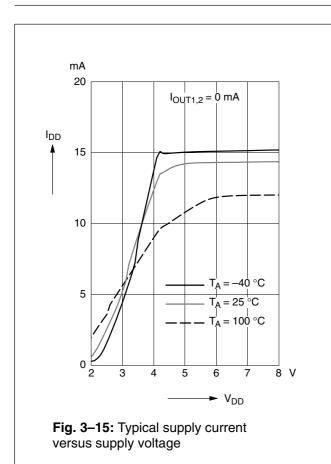

versus magnetic flux density

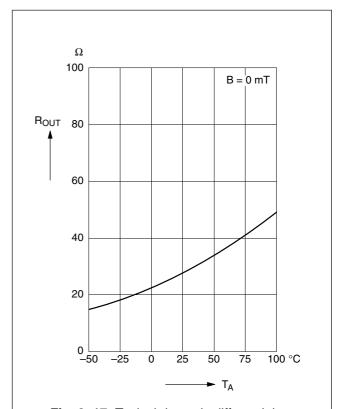
140
120
100
100
−50 −25 0 25 50 75 100 °C

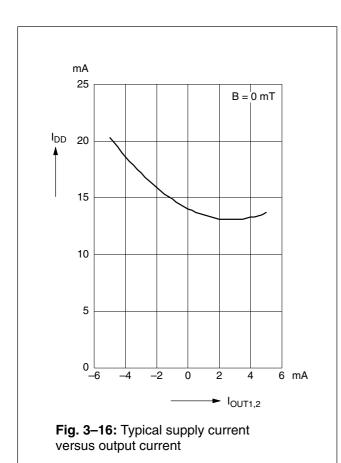

T_A


Fig. 3–10: Typical chopper frequency versus ambient temperature




Fig. 3–11: Typical common mode output voltage versus ambient temperature





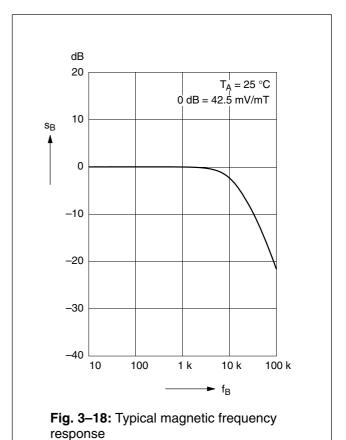

Fig. 3–12: Typical output AC voltage versus ambient temperature **Fig. 3–14:** Typical supply current versus temperature

Fig. 3–17: Typical dynamic differential output resistance versus temperature

4. Application Notes

Mechanical stress on the device surface (caused by the package of the sensor module or overmolding) can influence the sensor performance.

The parameter $V_{OUTACpp}$ (see Fig. 2–2) increases with external mechanical stress. This can cause linearity errors at the limits of the recommended operation conditions.

4.1. Ambient Temperature

Due to internal power dissipation, the temperature on the silicon chip (junction temperature T_J) is higher than the temperature outside the package (ambient temperature T_A).

$$T_J = T_A + \Delta T$$

At static conditions and continuous operation, the following equation applies:

$$\Delta T = I_{DD} * V_{DD} * R_{thJSB}$$

For typical values, use the typical parameters. For worst case calculation, use the max. parameters for I_{DD} and R_{th} , and the max. value for V_{DD} from the application.

For all sensors, the junction temperature range T_J is specified. The maximum ambient temperature T_{Amax} can be calculated as:

$$T_{Amax} = T_{Jmax} - \Delta T$$

4.2. EMC and ESD

Please contact Micronas for detailed information on EMC and ESD results.

4.3. Application Circuit

The normal integrating characteristics of a voltmeter is sufficient for signal filtering.

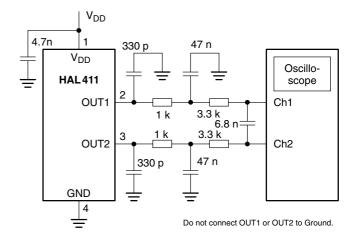


Fig. 4-1: Filtering of output signals

Display the difference between channel 1 and channel 2 to show the Hall voltage. Capacitors 4.7 nF and 330 pF for electromagnetic immunity are recommended.

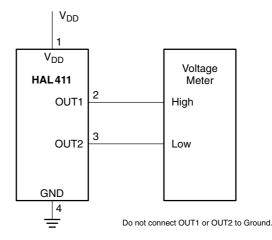
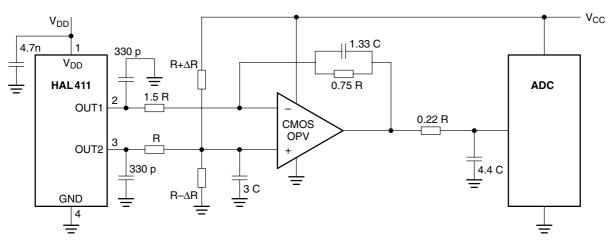



Fig. 4–2: Flux density measurement with voltmeter

Fig. 4–3: Differential HAL411 output to single-ended output R = 10 k Ω , C = 7.5 nF, Δ R for offset adjustment, BW_{-3dB} = 1.3 kHz

Do not connect OUT1 or OUT2 to Ground.

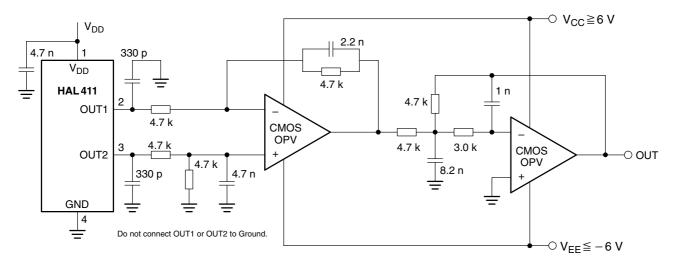


Fig. 4–4: Differential HAL411 output to single-ended output (referenced to ground), filter – BW_{–3dB} = 14.7 kHz

5. Data Sheet History

- 1. Final data sheet: "HAL411 Linear Hall Effect Sensor IC", Aug. 6, 2003, 6251-584-1DS. First release of the final data sheet.
- Final Data Sheet: "HAL411 Linear Hall Effect Sensor IC", Dec. 8, 2008, DSH000019_002EN
 Second release of the final data sheet.
 Major changes:
- Section 1.5. "Solderability and Welding" updated
- package diagrams updated
- Section 3.4.1. "Storage and Shelf Life" updated