imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Effective December 2015 Supersedes December 2007

HC9 High current power inductors

Product description

- Surface mount inductors designed for higher speed switch mode applications requiring lower inductance, low voltage and high current
- Design utilizes high temperature powder iron material with a non-organic binder to eliminate thermal aging
- Inductance Range from $0.2\mu H$ to $47.0\mu H$
- Current Range from 3.65 amps to 95.0 amps
- Frequency Range 1kHz to 500kHz

Applications

- Multi-phase regulators
- Voltage Regulator Modules (VRMs)
- Distributed power systems DC-DC converters
- Desktop and server VRMs and EVRDs
- Point-of-Load (POL) modules
- Field Programmable Gate Array (FPGA) DC-DC converters
- Battery power systems
- · High current power supplies
- · Data networking and storage systems

Environmental data

- Storage temperature range (component): -40°C to +155°C
- Operating temperature range: -40°C to +155°C (Ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant

Technical Data **DS4312** Effective December 2015

Product specifications

Part number ⁶	OCL ¹ (µH) ±15%	I _{rms} ² (amps)	l _{sat} ³ (amps) 20% rolloff	l _{sat} ⁴ (amps) 30% rolloff	DCR (mΩ) maximum @ 20°C	Volt-µsec⁵ (V-µs)
HC9-R20-R	0.218	46.7	65	95	0.50	2.87
HC9-R47-R	0.544	33.7	40	57	0.88	4.78
HC9-1R0-R	1.04	23.7	28	41	1.87	6.70
HC9-1R5-R	1.70	21.0	22	32	2.27	8.46
HC9-2R2-R	2.53	17.2	18	26	3.37	10.4
HC9-3R3-R	3.52	14.3	15	22	4.87	12.4
HC9-4R3-R	4.67	13.0	13.2	19.1	5.90	14.4
HC9-6R8-R	7.45	10.3	11.4	15.1	9.40	18.1
HC9-100-R	10.9	8.50	8.6	12.5	14.0	22.0
HC9-220-R	22.4	6.30	6.0	8.7	25.7	31.5
HC9-330-R	34.5	4.42	4.8	7.0	48.8	37.3
HC9-470-R	49.2	3.65	3.9	5.7	72.3	44.8

1. Open Circuit Inductance (OCL) Test Parameters: 100kHz, 1.0Vrms, 0.0Adc, @ +25°C

6. Part number definition: HC9-xxx-R

HC9= Product code and size

mm

13,4 ma

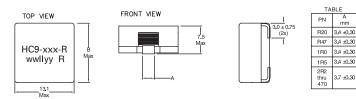
13,4 max

13,4 max

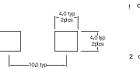
13.4 max

14.1 ma

xxx = Inductance in μ H. R = decimal point. If no R is present last character equals number of zeros. -R suffix = RoHS compliant


2. Irms: DC current for an approximately ΔT of 40°C without core loss. Derating is necessary for AC currents. Pad layout, trace thickness and width, airflow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 155°C under worst case conditions verified in the end application.

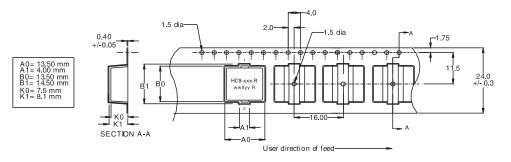
3. Peak current for approximately 20% rolloff @20°C


4. Peak current for approximately 30% rolloff @20°C

5. Applied Volt-Time product (V-µs) across the inductor. This value represents the applied V-µs at operating frequency necessary to generate additional core loss which contributes to the 40°C temperature rise. De-rating of the I_{ms} is required to prevent excessive temperature rise. The 100% Vµs rating is equivalent to a ripple current Ip-p of 20% of Isat (30% rolloff option).

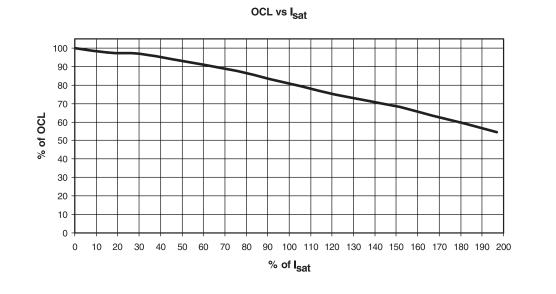
Dimensions-mm

RECOMMENDED PAD LAYOUT

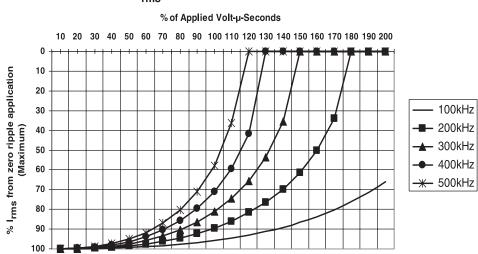

Part marking: HC9= (Product code and size)-xxx=(inductance value in uH, R= decimal point. If no R is present then last character equals number of zeros. wwlyly=date code, R=revision level

Tolerances are ±0.2 millimeters unless stated otherwise

Do not route traces or vias underneath the inductor

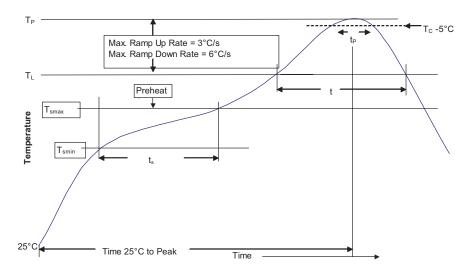

Packaging information-mm

Supplied in tape and reel packaging, 450 parts per reel, 13" diameter reel.



HC9 High current power inductors

Rolloff



Core loss

Irms DERATING WITH CORE LOSS

Solder reflow profile

$-_{T_c - 5^{\circ}C}$ Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm3 <350	Volume mm3 ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 – 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder 150°C	
Preheat and Soak • Temperature min. (T _{smin})	100°C		
• Temperature max. (T _{smax})	150°C	200°C	
• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p	3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL) Time at liquidous (tL)	183°C 60-150 Seconds	217°C 60-150 Seconds	
Peak package body temperature (Tp)*	Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**	
Average ramp-down rate (T _p to T _{smax})	6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak Temperature	6 Minutes Max.	8 Minutes Max.	

* Tolerance for peak profile temperature (T_n) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/elx

© 2015 Eaton All Rights Reserved Printed in USA Publication No. DS4312 December 2015

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

