imall

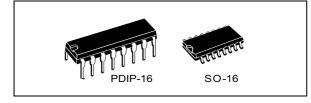
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



HCF4051

Single 8-channel analog multiplexer/demultiplexer

Datasheet - production data

Features

- Low "ON" resistance: 125 Ω (typ.)
- Over 15 V p.p signal-input range for $V_{DD} - V_{FF} = 15 V$
- High "OFF" resistance, channel leakage: \pm 100 pA (typ.) at V_{DD} - V_{EE} = 18 V
- Binary address decoding on chip
- High degree of linearity: < 0.5 % distortion typ. at f_{IS} = 1 KHz, V_{IS} = 5 V_{pp} , V_{DD} - $V_{SS} \ge$ 10 V, $R_{I} = 10 k\Omega$
- Very low guiescent power dissipation under all digital control input and supply conditions: $0.2 \,\mu\text{W}$ (typ.) $V_{\text{DD}} - V_{\text{SS}} = V_{\text{DD}} - V_{\text{EE}} = 10 \,\text{V}$
- Matched switch characteristics: $R_{ON} = 5 \Omega (typ.)$ for $V_{DD} - V_{FF} = 15 V$
- Wide range of digital and analog signal levels: digital 3 to 20, analog to 20 V p.p.
- Quiescent current specified up to 20 V
- 5 V, 10 V and 15 V parametric ratings
- ESD performance
 - HBM: 2 kV
 - MM: 200 V
 - CDM: 750 V

- Input leakage current I_I = 100 nA (max.) at V_{DD} = 18 V, T_A = 25 °C
- 100 % tested for quiescent current

Applications

- Automotive
- Industrial
- Computer
- Consumer

Description

The HCF4051 device is a monolithic integrated circuit fabricated in MOS (metal oxide semiconductor) technology available in SO-16 and PDIP-16 packages.

The HCF4051 analog multiplexer/demultiplexer is a digitally controlled analog switch having low ON impedance and very low OFF leakage current. This multiplexer circuit dissipates extremely low quiescent power over the full VDD - VSS and V_{DD} - V_{FF} supply voltage range, independent of the logic state of the control signals.

This device is a single 8-channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output. When a logic "1" is present at the inhibit input terminal all channels are off.

Order code	Temperature range	Package	Packaging	Marking				
HCF4051M013TR	-55/+125 °C	SO-16	Tape and reel	HCF4051				
HCF4051YM013TR ⁽¹⁾	-40/+125 °C	SO16 (automotive version)	Tape and Teel	HCF4051Y				
HCF4051BEY	-55/+125 °C	PDIP-16	Tube	HCF4051BE				

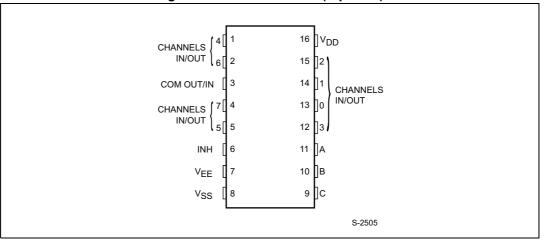
Table 1. Device summary

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

April 2013

DocID2053 Rev 3

This is information on a product in full production.

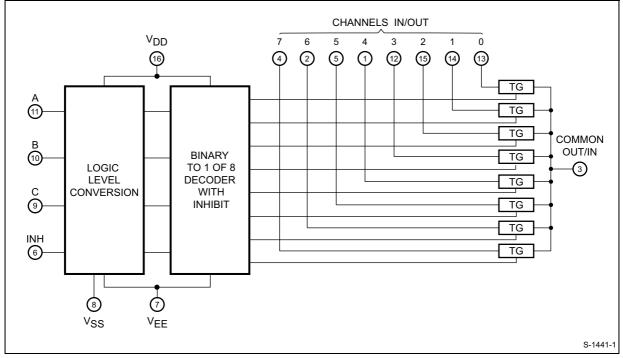

Contents

6	Revision history
5	Ordering information14
	4.2 SO-16 package information
	4.1 PDIP-16 (0.25) package information
4	Package information 11
3	Electrical characteristics6
2	Functional description4
1	Pin information

1 Pin information

Table 2. Pin description

Pin no.	Symbol	Name and function
11, 10, 9	A, B, C	Binary control inputs
6	INH	Inhibit inputs
13, 14, 15, 12, 1, 5, 2, 4	0 to 7 channel IN/OUT	Independent inputs/outputs
3	COM OUT/IN	Common output/input
7	V _{EE}	Supply voltage
8	V _{SS}	Negative supply voltage
16	V _{DD}	Positive supply voltage



2 Functional description

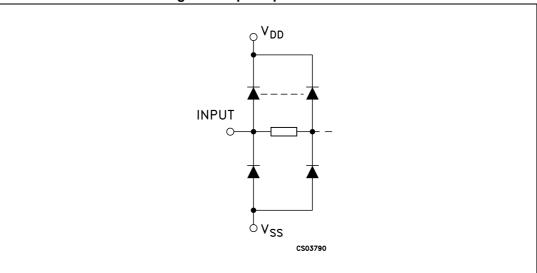

Input	"ON" channel (S)			
Inhibit	С	В	Α	"ON" channel (S)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	Х	Х	Х	None

Table 3. Truth table

3 Electrical characteristics

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltage values are referred to V_{SS} pin voltage.

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	-0.5 to +22	V
VI	DC input voltage	-0.5 to V _{DD} + 0.5	v
I _I	DC input current	±10	mA
Р	Power dissipation per package	500 ⁽¹⁾	mW
PD	Power dissipation per output transistor	100	mvv
T _{op}	Operating temperature	-55 to +125	0°
T _{stg}	Storage temperature	-65 to +150	C

Table 4. Absolute maximum ratings

1. 500 mW at 65 °C; derate to 300 mW by 10 mW/°C from 65 °C to 85 °C.

Table 5. Recommended operating conditions

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	3 to 20	V
VI	Input voltage	0 to V _{DD}	v
T _{op}	Operating temperature	-55 to 125	°C

51

		Test	t conditi	on	_	Value					
Symbol Parameter	Parameter	V _{IS}	V _{EE}	vss	V _{DD}	T _A = 25 °C		°C	-55 to 125 °C		Unit
		(V)	(V)	(V)	(V)	Min.	Тур.	Max.	Min.	Max.	
	Quiescent device				5		0.04	5		150	
۱ _L	current (all switches				10		0.04	10		300	μA
۰L	ON or all switches OFF)				15		0.04	20		600	μι
	,				20		0.08	100		3000	
Switch											
					5		470	1050		1200	
R _{ON}	Resistance	$0 \leq V_{I} \leq V_{DD}$	0	0	10		180	400		520	
					15		125	280		360	Ω
	Resistance Δ_{RON}				5		10				22
D _{ON}	(between any 2 of 4 $0 \le V_I \le V_{DD}$ switches)	0	0	10		10					
	switches)				15		5				
OFF ⁽¹⁾	Channel leakage current (all channels OFF) (COMMON O/I)		0	0	18		±0.1	100		1000	nA
OFF ⁽¹⁾	Channel leakage current (any channel OFF)		0	0	18		±0.1	100		1000	
Cl	Input capacitance						5				
C _O	Output capacitance		-5	-5	5		30				pF
C _{IO}	Feedthrough						0.2				
Control (address or inhibit)										
					5			1.5		1.5	
V _{IL}	Input low voltage		V _{EE} :	= V _{SS}	10			3		3	
		= V _{DD} through		1KΩ V _{SS}	15			4		4	
		¹ ΚΩ	l _{IS} <	2μΑ	5	3.5			3.5		V
V_{IH}	V _{IH} Input high voltage			ll OFF inels)	10	7			7		
					15	11			11		
I _{IH,} I _{IL}	Input leakage current	$V_{I} = 0/$	′18 V		18		±10 ⁻³	±0.1		±1	μA
CI	Input capacitance						5	7.5			pF

Table 6. DC specifications

1. Determined by minimum feasible leakage measurement for automating testing.

	Test condition						Value			Unit	
Parameter	V _{EE} (V)	R L (ΚΩ)	f _l (KHz)	V _I (V)	V _{SS} (V)	V _{DD} (V)		Min.	Тур.	Max.	
D						5			30	60	
Propagation delay time (signal input to output)		200				10			15	30	ns
						15			11	20	
Frequency response channel "ON"	=V _{SS}	1		5 ⁽²⁾		10	V _O at common OUT/IN		20		
(sine wave input) at 20 log V _O /V _I = -3 dB	- v _{SS}			J		10	V _O at any channel		60		
Feedthrough (all channels OFF)	=V _{SS}	1		5 ⁽²⁾		10	V _O at common OUT/IN		12		MHz
at 20 log $V_0/V_1 = -40 \text{ dB}$	- v _{SS}	1		50		10	V _O at any channel		8		
Frequency signal crosstalk at 20 log $V_0/V_1 = -40 \text{ dB}$	= V _{SS}	1		5 ⁽²⁾		10	Between any 2 channels		3		
				2 ⁽²⁾		5			0.3		
Sine wave distortion f _{IS} = 1 KHz sine wave	$= V_{SS}$	10	1	3 ⁽²⁾		10			0.2	9	%
13				5 ⁽²⁾		15			0.12		
Control (address or inhib	oit)										
	0				0	5			360	720	
Propagation delay:	0				0	10			160	320	
address to signal OUT (channels ON or OFF)	0				0	15			120	240	
	-5				0	5			225	450	
	0				0	5			360	720	
Propagation delay: inhibit	0	1			0	10			160	320	
to signal OUT (channel turning ON)	0	1			0	15			120	240	ns
-	-10				0	5]		200	400	
Propagation delay: inhibit to signal OUT (channel turning OFF)	0				I	5			200	450	
	0	10				10			90	210	
	0	10				15			70	160	
	-10					5			130	300	
Address or inhibit to signal crosstalk	0	10 ⁽¹⁾			0	10	V _C = V _{DD} - V _{SS} (square wave)		65		mV peak

Table 7. Dynamic electrical characteristics $(T_{amb} = 25 \text{ °C}, C_L = 50 \text{ pF}, \text{ all input square wave rise and fall time = 20 ns})^{(1)}$

1. Both ends of channel.

2. Peak-to-peak voltage symmetrical about (V_{DD} - V_{EE}) /2.

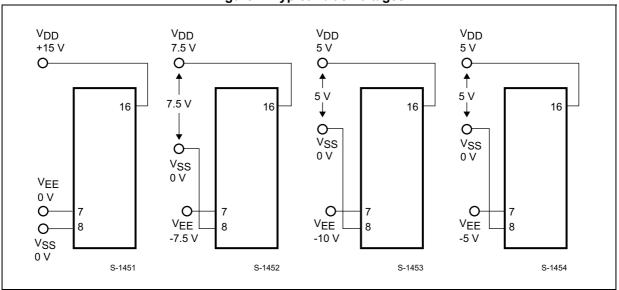
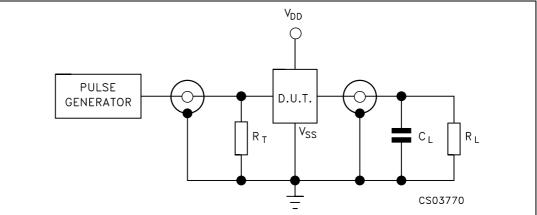


Figure 4. Typical bias voltages


1. The ADDRESS (digital-control inputs) and INHIBIT logic levels are : "0" = V_{SS} and "1" = V_{DD}. The analog signal (through the TG) may swing from V_{EE} to V_{DD}.

Special considerations

Control of analog signals up to 20 V peak-to-peak can be achieved by digital signal amplitudes of 4.5 to 20 V (if $V_{DD} - V_{SS} = 3 V$, a $V_{DD} - V_{EE}$ of up to 13 V can be controlled; for $V_{DD} - V_{EE}$ level differences above 13 V, a $V_{DD} - V_{SS}$ of at least 4.5 V is required).

For example, if V_{DD} = +5, V_{SS} = 0, and V_{EE} = -13.5, analog signals from -13.5 V to 4.5 V can be controlled by digital inputs of 0 to 4.5 V. In certain applications, the external load resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 V (calculated from R_{ON} values shown in *Table 6: DC specifications*). No V_{DD} current flows through R_L if the switch current flows into lead 3.

1. C_L = 50 pF or equivalent (includes jig and probe capacitance) R_L = 200 K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω).

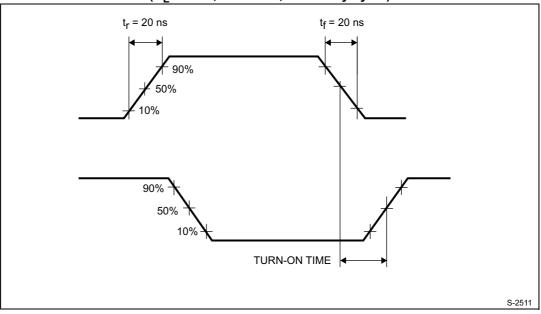
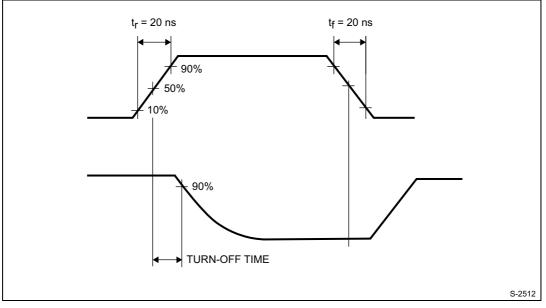
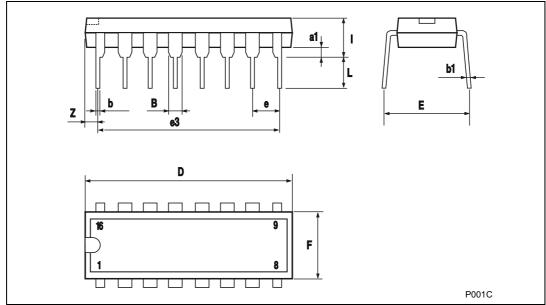



Figure 6. Waveform 1: channel turned ON (R_L = 1 K Ω , f = 1 MHz; 50 % duty cycle)

Figure 7. Waveform 2: channel turned OFF (R_L = 1 KW, f = 1 MHz; 50 % duty cycle)



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

4.1 PDIP-16 (0.25) package information

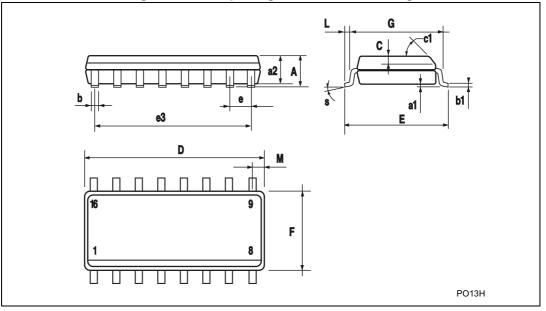

Figure 8. PDIP-16 (0.25) package mechanical drawing

Table 8. PDIP-16 (0.25) package mechanical data

	Dimensions									
Symbol		mm			inch					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
a1	0.51			0.020						
В	0.77		1.65	0.030		0.065				
b		0.5			0.020					
b1		0.25			0.010					
D			20			0.787				
E		8.5			0.335					
е		2.54			0.100					
e3		17.78			0.700					
F			7.1			0.280				
I			5.1			0.201				
L		3.3			0.130					
Z			1.27			0.050				

4.2 SO-16 package information

Figure 9. SO-16 package mechanical drawing

Table 9. SO-16 package mechanical data

	Dimensions									
Symbol		mm		inch						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.75			0.068				
a1	0.1		0.2	0.003		0.007				
a2			1.65			0.064				
b	0.35		0.46	0.013		0.018				
b1	0.19		0.25	0.007		0.010				
С		0.5			0.019					
c1			45° ((typ.)						
D	9.8		10	0.385		0.393				
Е	5.8		6.2	0.228		0.244				
е		1.27			0.050					
e3		8.89			0.350					
F	3.8		4.0	0.149		0.157				
G	4.6		5.3	0.181		0.208				
L	0.5		1.27	0.019		0.050				
М			0.62			0.024				
S			8 ° (max.)	•					

DocID2053 Rev 3

5 Ordering information

Table	10.	Order	codes
-------	-----	-------	-------

Order code	Temperature range	Package	Packaging	Marking
HCF4051M013TR	-55/+125 °C	SO-16		HCF4051
HCF4051YM013TR ⁽¹⁾	-40/+125 °C	SO16 (automotive version)	Tape and reel	HCF4051Y
HCF4051BEY	-55/+125 °C	PDIP-16	Tube	HCF4051BE

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

6 Revision history

Date	Revision	Changes		
26-Oct-2012	2	Updated <i>Features</i> (added ESD values), added <i>Applications</i> . Updated <i>Table 1</i> (reformatted table, added order codes, temperature range, marking, updated package and packaging). Updated <i>Description</i> (unified part numbers, moved to page 2). Updated <i>Section 2</i> to <i>Section 4</i> (added titles and numbering). Updated <i>Table 6</i> (removed -40/+85° temperature range). Reformatted <i>Section 4</i> (added ECOPACK text, <i>Figure 8, Figure 9,</i> <i>Table 8</i> , and <i>Table 9</i>). Minor corrections throughout document.		
30-Apr-2013	3	Updated <i>Features</i> (ESD values) Added <i>Section 5: Ordering information</i>		

Table 11. Document revision history	Table 11.	Document	revision	history
-------------------------------------	-----------	----------	----------	---------

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID2053 Rev 3