: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

- LOW "ON" RESISTANCE : 125Ω (Typ.) OVER 15V p.p SIGNAL-INPUT RANGE FOR $V_{D D}-V_{E E}=15 \mathrm{~V}$
- HIGH "OFF" RESISTANCE : CHANNEL LEAKAGE $\pm 100 \mathrm{pA}$ (Typ.) at $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=18 \mathrm{~V}$
- BINARY ADDRESS DECODING ON CHIP
- HIGH DEGREE OF LINEARITY : $<0.5 \%$ DISTORTION TYP. at $f_{I S}=1 \mathrm{KHz}, \mathrm{V}_{\text {IS }}=5 \mathrm{~V}_{\mathrm{pp}}$, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \geq 10 \mathrm{~V}, \mathrm{RL}=10 \mathrm{~K} \Omega$
- VERY LOW QUIESCENT POWER DISSIPATION UNDER ALL DIGITAL CONTROL INPUT AND SUPPLY CONDITIONS : $0.2 \mu \mathrm{~W}$ (Typ.) at $V_{D D}-V_{S S}=V_{D D}-V_{E E}=10 \mathrm{~V}$
- MATCHED SWITCH CHARACTERISTICS : $\mathrm{R}_{\mathrm{ON}}=5 \Omega$ (Typ.) FOR $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$
- WIDE RANGE OF DIGITAL AND ANALOG SIGNAL LEVELS : DIGITAL 3 to 20, ANALOG TO 20V p.p.
- QUIESCENT CURRENT SPECIF. UP TO 20V
- 5V, 10V AND 15 V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT $I_{I}=100 \mathrm{nA}(\mathrm{MAX}) A T \mathrm{~V}_{\mathrm{DD}}=18 \mathrm{~V}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4053B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF4053BEY	
SOP	HCF4053BM1	HCF4053M013TR

technology available in DIP and SOP packages.
The HCF4053B analog multiplexer/demultiplexer is a digitally controlled analog switch having low ON impedance and very low OFF leakage current. This multiplexer circuit dissipate extremely low quiescent power over the full $V_{D D}-V_{S S}$ and $V_{D D}$ V_{EE} supply voltage range, independent of the logic state of the control signals.
When a logic "1" is present at the inhibit input terminal all channel are off. This device is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C , and an inhibit input. Each control input selects one of a pair of channels which are connected in a single pole double-throw configuration.

PIN CONNECTION

HCF4053B

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$11,10,9$	A, B, C	Binary Control Inputs
6	INH	Inhibit Inputs
$12,13,2,1$, 5,3	IN/OUT	ax,ay,bx,by,cx,cy Input/ Output
14	OUT/IN	ax or ay
15	OUT/IN	bx or by
4	OUT/IN	cx or cy
7	$\mathrm{~V}_{\text {EE }}$	Supply Voltage
8	$\mathrm{~V}_{\text {SS }}$	Negative Supply Voltage
16	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

TRUTH TABLE

INHIBIT	C or B or A	
0	0	ax or bx or cx
0	1	ay or by or cy
1	X	NONE
X: Don't Care		

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	$500\left(^{*}\right)$	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to $\mathrm{V}_{S S}$ pin voltage.
(*) 500 mW at $65^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

HCF4053B

DC SPECIFICATIONS

Symbol	Parameter	Test Condition				Value							Unit
		$\begin{aligned} & V_{\text {IS }} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & V_{E E} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & V_{\text {SS }} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & V_{D D} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
						Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Device Current (all switches ON or all switches OFF)				5		0.04	5		150		150	$\mu \mathrm{A}$
					10		0.04	10		300		300	
					15		0.04	20		600		600	
					20		0.08	100		3000		3000	

SWITCH											
R_{ON}	Resistance	$\begin{gathered} 0 \leq V_{1} \leq \\ V_{D D} \end{gathered}$	0	0	5	470	1050	1200		1200	Ω
					10	180	400	520		520	
					15	125	280	360		360	
$\Delta_{\text {ON }}$	Resistance $\Delta_{\text {RON }}$ (between any 2 of 4 switches)	$\begin{gathered} 0 \leq V_{1} \leq \\ V_{D D} \end{gathered}$	0	0	5	10			I		Ω
					10	10		ก			
					15	5		-			
OFF*	Channel Leakage Current (All Channel OFF) (COMMON O/I)		0	0	18		$\begin{gathered} 100 \\ 8 \end{gathered}$	1000		1000	nA
OFF*	Channel Leakage Current (Any Channel OFF)		0	0	18	± 0.1	100	1000		1000	nA
C_{1}	Input Capacitance		-5	-5	5	5					pF
C_{0}	Output Capacitance					9					
C_{10}	Feed through					0.2					

CONTROL (Address or Inhibit)

$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\begin{gathered} =\text { VDD } \\ \text { thru } \\ 1 \mathrm{~K} \Omega \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ \text { to } \mathrm{V}_{\mathrm{SS}} \\ \mathrm{I}_{\mathrm{IS}}<2 \mu \mathrm{~A} \\ \text { (on all OFF } \\ \text { channels) } \end{gathered}$	5			1.5		1.5		1.5	V
				10			3		3		3	
				15			4		4		4	
V_{IH}	Input High Voltage			5	3.5			3.5		3.5		V
				10	7			7		7		
				15	11			11		11		
${ }_{1 / 2}{ }^{1 / 1 / 2}$	Input Leakage Current		0/18V	18		$\pm 10^{-3}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
C_{1}	Input Capacitance					5	7.5					pF

* Determined by minimum feasible leakage measurement for automating testing.

DYNAMIC ELECTRICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, all input square wave rise and fall time $=20 \mathrm{~ns}$)

Parameter	Test Condition							Value			Unit		
	$\begin{aligned} & V_{E E} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathbf{R}_{\mathbf{L}} \\ (\mathrm{K} \Omega) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathbf{l}} \\ (\mathrm{KHz}) \end{gathered}$	$\begin{gathered} V_{\mathbf{I}} \\ (\mathrm{V}) \end{gathered}$	$\begin{aligned} & V_{\mathrm{SS}} \\ & (\mathrm{~V}) \end{aligned}$	V_{DD} (V)		Min.	Typ.	Max.			
Propagation Delay Time (signal input to output)		200	$\begin{aligned} & V_{D D} \\ & \boxed{L} \end{aligned}$		5 10 15				30	60	ns		
							15	30					
							11	20					
Frequency Response Channel "ON" (sine wave input) at $20 \log V_{O} / V_{1}=-3 d B$	$=\mathrm{V}_{\text {SS }}$	1		$5\left({ }^{*}\right)$				10	V_{O} at Common OUT/IN		25		MHz
							V_{O} at any channel			60	-		
Feed through (all channels OFF) at $20 \log V_{O} / V_{1}=-40 d B$	$=\mathrm{V}_{\text {SS }}$	1		$5{ }^{*}$)		10		V_{O} at Common OUT/IN		10		MHz	
							V_{O} at any channel		8				
Frequency Signal Crosstalk at $20 \log V_{O} / V_{1}=-40 d B$	$=\mathrm{V}_{\mathrm{SS}}$	1		$5{ }^{*}$)		10	Between any 2 Sections (IN pin 2, OUT pin 14)		2.5		MHz		
							Between any 2 Sections (IN pin 15, OUT pin 14)		6				
Sine Wave Distortion $\mathrm{f}_{\mathrm{I}}=1 \mathrm{KHz}$ Sine Wave	$=\mathrm{V}_{\text {SS }}$	10	1	$2{ }^{*}$)		5			0.3		\%		
				3(*)		10			0.2				
				5(*)		15			0.12				
CONTROL (Address or Inhibit)													
Propagation Delay: Address to Signal OUT (Channels ON or OFF)	0				0	5			360	720	ns		
	0				0	10			160	320			
	0				0	15			120	240			
	-5				0	5			225	450			
Propagation Delay: Inhibit to Signal OUT (Channel turning ON)	0	1			0	5			360	720	ns		
	0				0	10			160	320			
	0				0	15			120	240			
	-10				0	5			200	400			
Propagation Delay: Inhibit to Signal OUT (Channel turning OFF)	0	10				5			200	450	ns		
	0					10			90	210			
	0					15			70	160			
	-10					5			130	300			
Address or Inhibit to Signal Crosstalk	0	$10^{(1)}$			0	10	$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ (square wave)		65		$\begin{gathered} \mathrm{mV} \\ \text { peak } \end{gathered}$		

(1) Both ends of channel.

* Peak to Peak voltage symmetrical about $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}\right) / 2$

TYPICAL BIAS VOLTAGES

The ADDRESS (digital-control inputs) and INHIBIT logic levels are : " 0 " $=\mathrm{V}_{\mathrm{SS}}$ and "1"= V_{DD}. The analog signal (through the TG) may swing from $V_{E E}$ to $V_{D D}$

SPECIAL CONSIDERATIONS

Control of analog signals up to 20 V peak to peak can be achieved by digital signal amplitudes of 4.5 to 20 V (if $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}=3 \mathrm{~V}$, a $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{E E}$ of up to 13 V can be controlled; for $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ level differences above 13 V , a $\mathrm{V}_{D D}-\mathrm{V}_{S S}$ of at least 4.5 V is required. For example, if $\mathrm{V}_{\mathrm{DD}}=+5, \mathrm{~V}_{S S}=0$, and $\mathrm{V}_{\mathrm{EE}}=-13.5$, analog signals from -13.5 V to 4.5 V can be controlled by digital inputs of 0 to 4.5 V . In
certain applications, the external load resistor current may include both $V_{D D}$ and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed $0,8 \mathrm{~V}$ (calculated from R_{ON} values shown in DC SPECIFICATIONS). No $V_{D D}$ current will flow through R_{L} if the switch current flows into leads 4, 14 and 15 .

TEST CIRCUIT

[^0]$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

WAVEFORM 1 : CHANNEL BEING TURNED ON ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2 : CHANNEL BEING TURNED OFF ($\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			2.5			0.335
E		17.78			0.100	
e						0.787
e3						
F		3.3				0.130
I						
L						0.27
Z						0.050

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	C
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89		\times	0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© $\mathbf{2 0 0 2}$ STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

[^0]: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
 $\mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega$

