: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

- QUIESCENT CURRENT SPECIF. UP TO 20V
- OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY.
- EQUIVALENT AC OUTPUT DRIVE FOR LIQUID CRYSTAL DISPLAYS - NO EXTERNAL CAPACITOR REQUIRED
- VOLTAGE DOUBLING ACROSS DISPLAY $\left[\left(V_{D D}-V_{E E}\right)=18 \mathrm{~V}\right]$ RESULTS IN EFFECTIVE 36 V (p-p) DRIVE ACROSS SELECTED DISPLAY SEGMENTS
- LOW OR HIGH OUTPUT LEVEL DC DRIVE FOR OTHER TYPES OF DISPLAYS
- ONE CHIP LOGIC LEVEL CONVERSION FOR DIFFERENT INPUT AND OUTPUT LEVEL SWINGS
- FULL DECODING OF ALL INPUT COMBINATIONS : "0-9, L, H, P, A" AND BLANK POSITIONS
- INPUT LEAKAGE CURRENT $I_{I}=100 n A(M A X)$ AT $V_{D D}=18 V T_{A}=25^{\circ} \mathrm{C}$
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

HCF4056B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages.

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	HCF4056BEY	
SOP	HCF4056BM1	HCF4056M013TR

HCF4056B is a single digit BCD to 7 segment decoder driver circuit that provides a level shifting function on the chip. This feature permits the BCD input-signal swings ($V_{D D}$ to $V_{S S}$) to be the same as or different from the 7 -segment output signal swings (V_{DD} to V_{EE}). For example, the BCD input-signal swings (V_{DD} to V_{SS}) may be as low as 0 to -3 V , whereas the output-display drive signal swing ($V_{D D}$ to $V_{E E}$) may be from 0 to -5 V . If V_{DD} to $V_{E E}$ exceeds 15 V , $V_{D D}$ to $V_{S S}$ should be at least 4 V . The 7 -segment outputs are controlled by the DISPLAY-FREQUENCY (DF) input, which causes the selected segment outputs to be low, high, or a square wave output (for liquid crystal displays).

PIN CONNECTION

When the DF input is low, the output segments will be high when selected by the BCD inputs. When the DF input is high, the output segments will be low when selected by the BCD inputs. When a square wave is present at the DF input, the selected segments will have a square wave output that is 180° out of phase with the DF input. Those segments which are not selected will have a square wave output that is in phase with the input. DF square wave repetition rates for liquid crystal displays usually range from 30 Hz (well above flicker rate) to 200 Hz (well below the upper limit of the liquid crystal frequency response). HCF4056B provides a strobed-latch function at the BCD inputs. The decoding of all input combinations in

INPUT EQUIVALENT CIRCUIT

this device provides displays of 0 to 9 as well as L, P, H, A, -, and a blank position. The level shifted function permits the use of different input and output signal swings. The input swings from a low level of V_{SS} to a high level of V_{DD}, while the outputs swing from a low level of V_{EE} to the same high level of $V_{D D}$. Thus, the input and output swings can be selected independently of each other over a 3 to 18 V range. V_{SS} may be connected to V_{EE} when no level-shift function is required. The HCF4056B, however must be used together with HCF4054B to provide the common DF output.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$5,3,2,4$	$2^{0}, 2^{1}, 2^{2}, 2^{3}$	BCD Inputs
$9,10,11,12$, $13,15,14$	a to g	7 - Segments Outputs
6	DISPLAY FREQ. IN	Display Frequency Input
1	STROBE	Strobe Input
7	$\mathrm{~V}_{\mathrm{EE}}$	Negative Supply Voltage
8	$\mathrm{~V}_{\mathrm{SS}}$	Negative Supply Voltage
16	$\mathrm{~V}_{\mathrm{DD}}$	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TRUTH TABLE

INPUT CODE				OUTPUT STATE							DISPLAY CHARACTER
2^{3}	2^{2}	21	2^{0}	a	b	c	d	e	f	g	
L	L	L	L	H	H	H	H	H	H	L	0
L	L	L	H	L	H	H	L	L	L	L	1
L	L	H	L	H	H	L	H	H	L	H	2
L	L	H	H	H	H	H	H	L	L	H	3
L	H	L	L	L	H	H	L	L	H	H	4
L	H	L	H	H	L	H	H	L	H	H	5
L	H	H	L	H	L	H	H	H	H	H	6
L	H	H	H	H	H	H	L	L	L	L	7
H	L	L	L	H	H	H	H	H	H	H	- 8
H	L	L	H	H	H	H	H	L	H	H	9
H	L	H	L	L	L	L	H	H	H	L	L
H	L	H	H	L	H	H	L	H	H	H	H
H	H	L	L	H	H	L	L	H	H	H	P
H	H	L	H	H	H	H	L	H	H	H	A
H	H	H	L	L	L	L	L	L	L	H	-
H	H	H	H	L	L	L	L	L	L	L	BLANK

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
$\mathrm{~V}_{1}$	Input Voltage	0 to V_{DD}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$

HCF4056B

DC SPECIFICATIONS

Symbol	Parameter	Test Condition					Value							Unit
		$\begin{array}{\|l} \mathrm{V}_{\mathrm{EE}} \\ (\mathrm{~V}) \end{array}$	$\begin{gathered} V_{1} \\ (V) \end{gathered}$	$\begin{aligned} & V_{0} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & (\mathrm{~V}) \end{aligned}$	v_{DD}(V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
							Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
I_{L}	Quiescent Current	-5	0/5		0	5		0.04	5		150		150	$\mu \mathrm{A}$
		0	0/10		0	10		0.04	10		300		300	
		0	0/15		0	15		0.04	20		600		600	
		0	0/20		0	20		0.08	100		3000		3000	
V_{OH}	High Level Output Voltage	0	0/5		0	5	4.95			4.95		4.95		V
		0	0/10		0	10	9.95			9.95		9.95	\cdots	
		0	0/15		0	15	14.95			14.95		14.95	C	
V_{OL}	Low Level Output Voltage	0	5/0		0	5		0.05			0.05		0.05	V
		0	10/0		0	10		0.05			0.05	,	0.05	
		0	15/0		0	15		0.05			0.05		0.05	
V_{IH}	High Level Input Voltage	-5		0.5/4.5	0	5	3.5			3.5	-	3.5		V
		0		1/9	0	10	7			7		7		
		0		1.5/18.5	0	15	11		-	11		11		
V_{IL}	Low Level Input Voltage	5		0.5/4.5	0	5			1.5		1.5		1.5	V
		0		9/1	0	10			3		3		3	
		0		1.5/18.5	0	15	\bigcirc		4		4		4	
${ }^{\mathrm{IOH}}$	Output Drive Current	-5	0/5	4.5	0	5	-0.38	-0.9		-0.28		-0.28		mA
		0	0/10	9.5	0	10	-0.38	-0.9		-0.28		-0.28		
		0	0/15	13.5	0	15	-1.27	-3		-0.95		-0.95		
${ }^{\text {OL }}$	Output Sink Current	-5	0/5	0.4	0	5	1.1	2.6		0.82		0.82		mA
		0	0/10	0.5	0	10	1.1	2.6		0.82		0.82		
		0	0/15	1.5	0	15	2.9	6.8		2.17		2.17		
1	Input Leakage Current (any input)	0	0/18		0	18		$\pm 10^{-5}$	± 0.1		± 1		± 1	$\mu \mathrm{A}$
C_{1}	Input Capacitance (any input)							5	7.5					pF

The Noise Margin for both " 1 " and " 0 " level is: 1 V min. with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, 2 V min. with $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, 2.5 \mathrm{~V}$ min. with $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$
DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{a m b}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{~K} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$)

	Parameter	Test Condition				Value (*)			Unit
Symbol		$\begin{aligned} & V_{E E} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & V_{S S} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & V_{D D} \\ & (V) \end{aligned}$		Min.	Typ.	Max.	
$\mathrm{t}_{\text {PHL }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Time (any Input to any Output)	-5	0	5			650	1300	ns
		0	0	10			575	1150	
		0	0	15			375	750	
${ }_{\text {t }}{ }^{\text {HLL }}{ }^{\text {TLLH }}$	Transition Time (any Output)	-5	0	5			100	200	ns
		0	0	10			100	200	
		0	0	15			75	150	

(*) Typical temperature coefficient for all V_{DD} value is $0.3 \% /{ }^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

FIGURE 1 : Display Driver Circuit

FIGURE 2 : Display Driver Waveforms.

* RESULTANT LIQUID-CRYSTAL SEGMENT WAVEFORM IF DF OUT IS APPLIED TO LIQUIO-CRYSTAL COMMON LINE
DFIN = DISPLAY - FREOUENCY INPUT
$\mathrm{OF}_{\text {OUT }}=$ LEVEL - SHIFTED DISPLAY - FREQUENCY OUTPUT S-1494

FIGURE 3 : Conversion Of "H" Display To "F" Display

Example of a circuit that converts an " H " display (code 1011) to an " F " display.

TEST CIRCUIT

$C_{L}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=200 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

WAVEFORM : DATA SETUP TIME AND STROBE PULSE DURATION ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	C
D			20		0.335	
E		2.54			0.100	
e		17.78				0.787
e3			7.1			
F			5.1		0.130	
I		3.3				
L			1.27			0.280
Z						

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	S
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

