

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

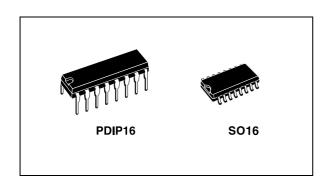
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



14-stage ripple carry binary counter/divider and oscillator

Datasheet - production data

Features

- · Medium speed operation
- Common reset
- Fully static operation
- Buffered inputs and outputs
- Quiescent current specified up to 20 V
- 5 V, 10 V and 15 V parametric ratings
- Input leakage current: I_I = 100 nA (max.) at V_{DD} = 18 V, T_A = 25 °C
- 100% tested for quiescent current
- ESD performance

HBM: 1 kVMM: 200 VCDM: 1 kV

Applications

- Automotive
- Industrial
- Computer
- Consumer

Description

The HCF4060 device is a monolithic integrated circuit fabricated in MOS (metal oxide semiconductor) technology available in SO16 and PDIP16 packages.

The HCF4060 device consists of an oscillator section and 14 ripple carry binary counter stages.

The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which resets the counter to the all 0's state and disables the oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of φ_1 (and φ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the clock pin permits unlimited clock rise and fall time.

Table 1. Device summary

Order code	Temperature range	Package	Packaging	Marking
HCF4060M013TR	-55/+125 °C	SO16	Tape and reel	HCF4060
HCF4060YM013TR ⁽¹⁾	-40/+125 °C	SO16 (automotive version)	Tape and reel	HCF4060Y
HCF4060BEY	-55/+125 °C	PDIP16	Tube	HCF4066BE

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

Contents HCF4060

Contents

5	Ordering information1	4
	4.2 SO16 package information	
	4.1 PDIP16 (0.25) package information	2
4	Package information	1
3	Electrical characteristics	6
2	Functional description	4
1	Pin information	3

HCF4060 Pin information

1 Pin information

Figure 1. Pin connection

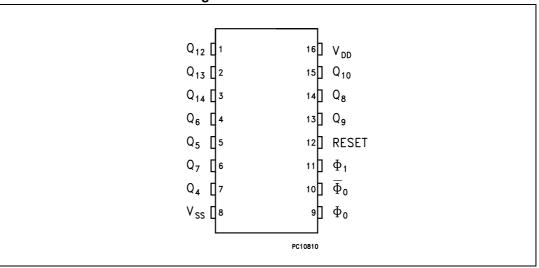


Table 2. Pin description

Pin no.	Symbol	Name and function
1, 2, 3 ,4, 5, 6, 7, 13, 14, 15	Q ₁₂ , Q ₁₃ , Q ₁₄ , Q ₆ , Q ₅ , Q ₇ , Q ₄ , Q ₉ , Q ₈ , Q ₁₀	Outputs
9, 10, 11	$\Phi_0, \overline{\Phi}_0, \Phi_1$	Oscillator input
12	RESET	Reset
8	V _{SS}	Negative supply voltage
16	V_{DD}	Positive supply voltage

2 Functional description

Figure 2. Logic diagram

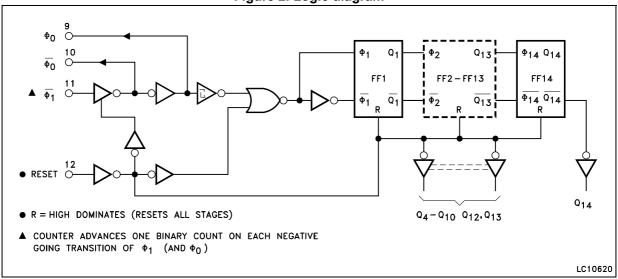
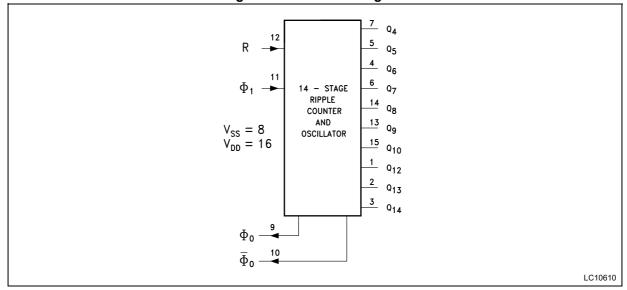



Figure 3. Functional diagram

INPUT VSS

Figure 4. Input equivalent circuit

Electrical characteristics HCF4060

3 Electrical characteristics

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltage values are referred to V_{SS} pin voltage.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit			
V_{DD}	Supply voltage	-0.5 to +22	V			
VI	DC input voltage -0.5 to V _{DD} + 0					
I _I	DC input current	±10	mA			
В	Power dissipation per package	200	mW			
P _D	Power dissipation per output transistor	100	IIIVV			
T _{op}	Operating temperature	-55 to +125	°C			
T _{stg}	Storage temperature	-65 to +150	C			

Table 4. Recommended operating conditions

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage 3 to 20		V
V _I	Input voltage	0 to V _{DD}	V
T _{op}	Operating temperature	-55 to 125	°C

Table 5. DC specifications⁽¹⁾

			Test cond	lition	_				Value)			
Symbol Parameter		Vı	v _o	ΙΙ _Ο Ι	V _{DD}	T,	4 = 25 °	,C	-40 to 85 °C		-55 to 125 °C		Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		0/5			5		0.04	5		5		150	
	Quiescent	0/10			10		0.04	10		10		300	μΑ
IL	current	0/15			15		0.04	20		20		600	μΑ
		0/20			20		0.08	100		100		3000	
		0/5		<1	5	4.95			4.95		4.95		
V _{OH}	High level output	0/10		<1	10	9.95			9.95		9.95		
OH	voltage	0/15		<1	15	14.9 5			14.9 5		14.9 5		
		5/0		<1	5		0.05			0.05		0.05	
V _{OL}	V _{OL} Low level output voltage	10/0		<1	10		0.05			0.05		0.05	-
		15/0		<1	15		0.05			0.05		0.05	V
	V _{IH} High level input voltage		0.5/4.5	<1	5	3.5			3.5		3.5		
V_{IH}			1/9	<1	10	7			7		7		
	- chage		1.5/13.5	<1	15	11			11		11		
			4.5/0.5	<1	5			1.5		1.5		1.5	
V_{IL}	Low level input voltage		9/1	<1	10			3		3		3	
	- chage		13.5/1.5	<1	15			4		4		4	
		0/5	2.5	<1	5	-1.36	-3.2		-1.15		-1.1		
1.	Output drive	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		
I _{OH}	current	0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		mA
		0/5	0.4	<1	5	0.44	1		0.36		0.36		
I _{OL} Output sink current		0/10	0.5	<1	10	1.1	2.6		0.9		0.9		1
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input leakage current	0/18	Any in	out	18		±10 ⁻⁵	±0.3		±0.3		±1	μА
C _I	Input capacitance		Any in	out			5	7.5					pF

^{1.} The noise margin for both "1" and "0" level is: 1 V min. with V_{DD} = 5 V, 2 V min. with V_{DD} = 10 V, 2.5 V min. with V_{DD} = 15 V.

Electrical characteristics HCF4060

Table 6. Dynamic electrical characteristics (T_{amb} = 25 °C, C_L = 50 pF, R_L = 200 K Ω , t_r = t_f = 20 ns)

			$_{.}$ = 200 K Ω , t_{r} = t_{f} = 20 ns)		/alue ⁽¹)	Unit
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
		5			100	200	
t _{TLH} , t _{THL}	Output transition time	10			50	100	
		15			40	80	
_		5			370	740	
t _{PLH} , t _{PHL}	Propagation delay time (10			150	300	
		15			100	200	
		5			100	200	ns
t _{PLH} , t _{PHL}	Propagation delay time (Q_n to Q_{n+1})	10			50	100	
		15			40	80	
		5			50	100	
t _W	Input pulse width	10	f = 100 KHz		20	40	
		15			15	30	
		5					
t _r , t _f	Input pulse rise and fall time	10		Unlimited			μs
		15					
		5		3.5	7		
f _{max}	Maximum clock input frequency	10		8	16		MHz
		15		12	24		
Reset ope	ration						
		5			180	360	
t _{PHL}	Propagation delay time	10			80	160	
		15			50	100	20
		5			60	120	ns
t _W	Input pulse width	10			30	60	
		15			20	40	
RC operat	ion						
		5		18	21.5	25	
	Variation of frequency (unit-to-unit)	10	C_x = 200 pF, R_s = 560 KΩ, R_x = 50 KΩ	20	23	26	†
	(uriit-to-uriit)	15	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.1	24	27	KHz
	Variation of frequency with voltage	5 to 10	$C_x = 200 \text{ pF}, R_s = 560 \text{ K}\Omega,$			2	
	change (the same unit)	10 to 15	$R_x = 50 \text{ K}\Omega$			1	

Table 6. Dynamic electrical characteristics (T_{amb} = 25 °C, C_L = 50 pF, R_L = 200 K Ω , t_r = t_f = 20 ns) (continued)

Symbol	Parameter	Test condition			Value ⁽¹⁾		
	raiailletei	V _{DD} (V)		Min.	Тур.	Max.	
		5	C _x = 10 μF			20	
R_X		10	C _x = 50 μF			20	МΩ
		15	C _x = 10 μF			10	
		5	R _x = 500 KΩ			1000	
C_X		10	R _x = 300 KΩ			50	μF
		15	R _x = 300 KΩ			50	
	Maximum oscillator frequency ⁽²⁾	10	$R_x = 5 \text{ K}\Omega, C_x = 15 \text{ pF}$	530	650	810	рE
	waxiinum oscillator frequency	15	$-\frac{1}{12}$	690	800	940	pF

^{1.} Typical temperature coefficient for all V_{DD} values is 0.3 %/°C, all input rise and fall times = 20 ns.

^{2.} RC oscillator applications are not recommended at supply voltages below 7 V for R $_{\rm X}$ = 50 K $\!\Omega.$

Electrical characteristics HCF4060

Figure 5. Detail of typical flip-flop stage

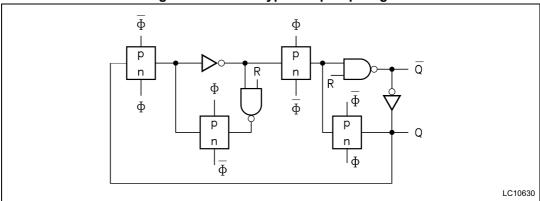


Figure 6. Typical RC oscillator circuit

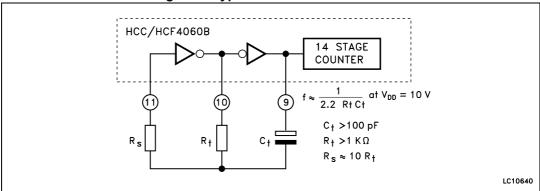
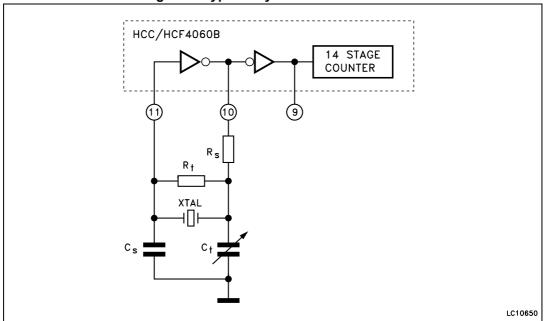



Figure 7. Typical crystal oscillator circuit

HCF4060 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Package information HCF4060

4.1 PDIP16 (0.25) package information

Z B B e3 D

Figure 8. PDIP16 (0.25) package mechanical drawing

Table 7. PDIP16 (0.25) package mechanical data

	Dimensions						
Symbol		mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
Е		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

HCF4060 Package information

4.2 SO16 package information

D M M PO13H

Figure 9. SO16 package mechanical drawing

Table 8. SO16 package mechanical data

			•	nsions		
Symbol		mm			inch	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.008
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S		·	8 ° (max.)		

Ordering information HCF4060

5 Ordering information

Table 9. Order codes

Order code	Temperature range	Package	Packaging	Marking
HCF4060M013TR	-55/+125 °C	SO16		HCF4060
HCF4060YM013TR ⁽¹⁾	-40/+125 °C	SO16 (automotive version)	Tape and reel	HCF4060Y
HCF4060BEY	-55/+125 °C	PDIP16	Tube	HCF4066BE

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
29-Oct-2012	5	Updated <i>Features</i> (added ESD values), added <i>Applications</i> . Updated <i>Table 1</i> (reformatted table, added order codes, temperature range, marking, updated package and packaging, added note 1.). Moved <i>Description</i> to page 2, updated <i>Description</i> (unified part numbers and package names). Updated <i>Section 2</i> to <i>Section 4</i> (added titles and numbering). Reformatted <i>Section 4</i> (added ECOPACK text, <i>Figure 8</i> , <i>Figure 9</i> , <i>Table 7</i> and <i>Table 8</i> , unified package names). Minor corrections throughout document.
02-May-2013	6	Updated Features (ESD values) Added Ordering information

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID2055 Rev 6 15/15