Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## **HCF4097B** # ANALOG DIFFERENTIAL 8 CHANNEL MULTIPLEXER/DEMULTIPLEXER - LOW ON RESISTANCE : 125Ω (Typ.) OVER 15V p-p SIGNAL INPUT RANGE FOR V<sub>DD</sub> - V<sub>SS</sub> = 15V - HIGH OFF RESISTANCE : CHANNEL LEAKAGE OF 10pA (Typ.) at V<sub>DD</sub> - V<sub>SS</sub> = 10V - MATCHED SWITCH CHARACTERISTICS : $\Delta R_{ON} = 5\Omega$ (Typ.) FOR $V_{DD} V_{SS} = 15V$ - VERY LOW QUIESCENT POWER DISSIPATION UNDER A DIGITAL CONTROL INPUT AND SUPPLY CONDITIONS: 0.2μW (Typ.) at V<sub>DD</sub> V<sub>SS</sub> = 10V - BINARY ADDRESS DECODING ON CHIP - QUIESCENT CURRENT SPECIFIED UP TO 20V - STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS - 5V, 10V AND 15V PARAMETRIC RATINGS - INPUT LEAKAGE CURRENT I<sub>I</sub> = 100nA (MAX) AT V<sub>DD</sub> = 18V T<sub>A</sub> = 25°C - 100% TESTED FOR QUIESCENT CURRENT - MEETS ALL REQUIREMENTS OF JEDEC JESD13B "STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES" #### DESCRIPTION HCF4097B is monolithic integrated circuits fabricated in Metal Oxide Semiconductor technology available in SOP package. #### **ORDER CODES** | PACKAGE | TUBE | T & R | |---------|------------|---------------| | SOP | HCF4097BM1 | HCF4097M013TR | HCF4097B, a analog multiplexer/demultiplexer CMOS, is a digitally controlled analog switches device having low ON impedance, low OFF leakage current and internal address decoding. in addition, the ON resistance is relatively constant over the full input-signal range. HCF4097B is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one of eight pairs of switches. A logic "1" present at the inhibit input turns all channels off. #### PIN CONNECTION September 2002 1/10 #### **INPUT EQUIVALENT CIRCUIT** #### **PIN DESCRIPTION** | PIN No | SYMBOL | NAME AND FUNCTION | |--------------------------------------|---------------------------------|-------------------------| | 10, 11, 14 | A, B, C | Binary Control Inputs | | 1 | COMMON X<br>OUT/IN | Common X Out/In | | 17 | COMMON Y<br>OUT/IN | Common Y Out/In | | 13 | INHIBIT | Inhibit Input | | 9, 8, 7, 6, 5,<br>4, 3, 2 | 0 to 7 CHAN-<br>NEL IN/OUT<br>X | 8 X channel In/Out | | 23, 22, 21,<br>20, 19, 18,<br>16, 15 | 0 to 7 CHAN-<br>NEL IN/OUT<br>Y | 8 Y channel In/Out | | 12 | V <sub>SS</sub> | Negative Supply Voltage | | 24 | $V_{DD}$ | Positive Supply Voltage | #### **FUNCTIONAL DIAGRAM** ## TRUTH TABLE | A | В | С | INH | SELECTED CHANNEL | |---|---|---|-----|------------------| | Х | Х | X | Н | NONE | | L | L | L | L | 0X 0Y | | Н | L | L | L | 1X 1Y | | L | Н | L | L | 2X 2Y | | Н | Н | L | L | 3X 3Y | | L | L | Н | L | 4X 4Y | | Н | L | Н | L | 5X 5Y | | L | Н | Н | L | 6X 6Y | | Н | Н | Н | L | 7X 7Y | #### LOGIC DIAGRAM #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|-----------------------------------------|-------------------------------|------| | V <sub>DD</sub> | Supply Voltage | -0.5 to +22 | V | | V <sub>I</sub> | DC Input Voltage | -0.5 to V <sub>DD</sub> + 0.5 | V | | I <sub>I</sub> | DC Input Current | ± 10 | mA | | $P_{D}$ | Power Dissipation per Package | 200 | mW | | | Power Dissipation per Output Transistor | 100 | mW | | T <sub>op</sub> | Operating Temperature | -55 to +125 | °C | | T <sub>stg</sub> | Storage Temperature | -65 to +150 | °C | Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltage values are referred to $V_{\mbox{SS}}$ pin voltage. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Value | Unit | |-----------------|-----------------------|----------------------|------| | V <sub>DD</sub> | Supply Voltage | 3 to 20 | V | | V <sub>I</sub> | Input Voltage | 0 to V <sub>DD</sub> | V | | T <sub>op</sub> | Operating Temperature | -55 to 125 | °C | | 5019 | ate Product(s). | | | #### STATIC ELECTRICAL CHARACTERISTICS $(T_{amb} = 25^{\circ}C, Typical temperature coefficient for all V_{DD} value is 0.3 \%/^{\circ}C)$ | | | Test Condition | | | | Value | | | | | | | | |-----------------|------------------------------------------------------------------|-----------------------------------------|---------------------|-------------------|-----------------|-----------------------|-------------------|-------------|------|--------------|----------|------|----| | Symbol | Parameter | V <sub>IS</sub> | V <sub>EE</sub> | V <sub>SS</sub> | V <sub>DD</sub> | T <sub>A</sub> = 25°C | | -40 to 85°C | | -55 to 125°C | | Unit | | | | | (V) | (V) | (V) | (V) | Min. | Тур. | Max. | Min. | Max. | Min. | Max. | | | ΙL | Quiescent Supply | | | | 5 | | 0.04 | 5 | | 150 | | 150 | | | | Current | | | | 10 | | 0.04 | 10 | | 300 | | 300 | ^ | | | | | | | 15 | | 0.04 | 20 | | 600 | | 600 | μΑ | | | | | | | 20 | | 0.08 | 100 | | 3000 | | 3000 | | | SWITCH | | • | | | • | • | • | | | | | | | | R <sub>ON</sub> | On Resistance | 0 - 1/ | | | 5 | | 470 | 1050 | | 1200 | | 1200 | | | | | 0 ≤ V <sub>I</sub><br>≤ V <sub>DD</sub> | 0 | 0 | 10 | | 180 | 400 | | 500 | - * | 520 | Ω | | | | ≤ vDD | | | 15 | | 125 | 240 | | 300 | 1G | 300 | | | $\Delta_{ON}$ | Resistance $\Delta_{RON}$ | | | | 5 | | 10 | | | | <b>O</b> | | | | | (between any 2 of | | 0 | 0 | 10 | | 10 | | - 46 | | | | Ω | | | 4 switches) | | | | 15 | | 5 | 4 | | ) | | | | | OFF (•) | Channel Leakage<br>Current Any<br>Channel Off | | 0 | 0 | 18 | | ±0.1 | 100 | | 1000 | | 1000 | | | | Channel Leakage<br>Current All<br>Channel Off<br>(Common Out/In) | | 0 | 0 | 18 | OS | ±0.1 | 100 | | 1000 | | 1000 | μΑ | | С | Capacitance Input | | | | | | 5 | | | | | | | | | Output capacitance | | | -5 | 5 | | 35 | | | | | | pF | | | Feedthrough | | ( | 61 | | | 0.2 | | | | | | | | CONTRO | DL | . ( | -1// | | | | | | | | | | | | $V_{IL}$ | Input Low Voltage | 77 // | Vee = | = V <sub>SS</sub> | 5 | | | 1.5 | | 1.5 | | 1.5 | | | | | (O: | R <sub>I</sub> = 11 | | 10 | | | 3 | | 3 | | 3 | V | | | 210 | = VDD | _ | SS | 15 | | | 4 | | 4 | | 4 | | | $V_{IH}$ | Input High Voltage | thru<br>1KΩ | l <sub>IS</sub> < 2 | | 5 | 3.5 | | | 3.5 | | 3.5 | | | | | 40, | | | OFF | 10 | 7 | | | 7 | | 7 | | V | | | | | chan | nels) | 15 | 11 | | | 11 | | 11 | | | | | Input Leakage<br>Current | VI | = 0/18\ | / | 18 | | ±10 <sup>-3</sup> | ±0.1 | | ±1 | | ±1 | μΑ | | Cı | Input Capacitance | Any Add | ress or<br>Input | Inhibit | | | 5 | 7.5 | | | | | pF | The Noise Margin for both "1" and "0" level is: 1V min. with $V_{DD}$ =5V, 2V min. with $V_{DD}$ =10V, 2.5V min. with $V_{DD}$ =15V • Determined by minimum feasible leakage measurement for automating testing $\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \ (T_{amb} = 25 ^{\circ}\text{C}, \ \ C_{L} = 50 \text{pF}, \ R_{L} = 200 \text{K}\Omega, \ \ t_{f} = t_{f} = 20 \ \text{ns})$ | | | Test Condition | | | | | | | Value* | | Unit | |-------------------------------------|-------------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------|--------------------|---------------------|---------------------|----------------------------------------------------|-----------|------------|------------| | Symbol | Parameter | V <sub>C</sub> (V) | <b>R</b> <sub>L</sub> (ΚΩ) | f <sub>I</sub><br>(KHz) | V <sub>I</sub> (V) | V <sub>SS</sub> (V) | V <sub>DD</sub> (V) | | Тур. | Max. | | | SWITCH | | | | | | | | | | | | | t <sub>pd</sub> | Propagation Delay | | | | | | 5 | | 30 | 60 | | | | Time (Signal Input to Output) | $= V_{DD}$ | 200 | | | 0 | 10 | | 15 | 30 | ns | | | . , | | | | | | 15 | | 11 | 20 | | | | Frequency Response Channel "ON" (Sine Wave | | | | | | | V <sub>O</sub> at Common<br>Out/In | 20 | | | | | Input) at $20 \text{ Log } \frac{V_O}{V_I} = -3 \text{dB}$ | = V <sub>DD</sub> | 1 | | 5 (•) | 0 | 10 | V <sub>O</sub> at Any Chan-<br>nel | 60 | 15 | ns | | | Feedthrough (All channels OFF) at | = V <sub>SS</sub> | 1 | | F (a) | 0 | 10 | V <sub>O</sub> at Common<br>Out/In | 12 | | MHz | | | $20 \text{ Log } \frac{V_O}{V_I} = -40 \text{dB}$ | - vss | 1 | | 5 (•) | U | 10 | V <sub>O</sub> at Any Chan-<br>nel | 8 | | IVII-12 | | | | | | | | | 16, | Between Any two<br>(A and B)<br>Channels | 1 | | MHz | | | Frequency Signal<br>Crosstalk at<br>20 Log $\frac{V_{O(A)}}{V_{I(B)}}$ =-40dB | $V_{C(A)}$ $=V_{DD}$ $V_{C(B)}$ | 1 | | 5 (•) | 0 | 10 | Between Sections (A and B) Measured on Common | 10 | | | | | V <sub>I(B)</sub> | =V <sub>SS</sub> | الراج | | | | | Between Sections (A and B) Measured on any Channel | 18 | | | | $t_W$ | Sine Wave | 5 | | | 2 (•) | | 5 | | 0.3 | | | | | Distortion (f <sub>IS</sub> = | 10 | 10 | 1 | 3 (•) | 0 | 10 | | 0.2 | | % | | | 1KHz sine wave) | 15 | | | 5 (•) | | 15 | | 0.12 | | | | | (Address or Inhibit) | I | | ı | I | I | | | 005 | 050 | I | | t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay Time:Address or | | | | | | 5 | | 325 | 650 | | | 0501 | Inhibit to Signal OUT (Channel Turning ON) | | 1 | | | 0 | 10<br>15 | | 135<br>95 | 190 | ns | | t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay | | | | | | 5 | | 220 | 440 | | | | Time:Address or<br>Inhibit to Signal<br>OUT (Channel<br>Turning OFF) | | 0.3 | | | 0 | 10<br>15 | | 90<br>65 | 180<br>130 | ns | | | Address or Inhibit to<br>Signal Crosstalk | | 10** | 2.07/90 | | 0 | 10 | | 75 | | mV<br>peak | <sup>(\*)</sup> Typical temperature coefficient for all V<sub>DD</sub> value is 0.3 %/°C (\*\*): Both Ends of Channel (•): Peak to Peak voltage symmetrical about (V<sub>DD</sub> - V<sub>SS</sub>) / 2 #### **APPLICATION INFORMATION** In applications where separate power sources are used to drive $V_{DD}$ and the signal inputs, the $V_{DD}$ current capability should exceed $V_{DD}/R_L$ ( $R_L$ = effective external load). This provision avoids permanent current flow or clamp action on the $V_{DD}$ supply when power is applied or removed from the HCF4097B. When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also, when a channel is turned ON or OFF by an address input, there is a momentary conductive path from the channel to $V_{\rm SS}$ , which will dump some charge from any capacitor connected to the input or output of the channel. The inhibit input turning on a channel will similarly dump some charge to $V_{\rm SS}$ . The amount of charge dumped is mostly a function of the signal level above $V_{SS}$ . Typically, at $V_{DD}$ - $V_{SS}$ = 10V, a 100 pF capacitor connected to the input or output of the channel will lose 3-4% of its voltage at the moment the channel turns ON or OFF. This loss of voltage is essentially independent of the address or inhibit signal transition time, if the transition time is less than 1-2 ms. When the inhibit signal turns a channel off, there is no change dumping of $V_{\rm SS}$ . Rather, there is a slight rise in the channel voltage level (65 mV typ.) due to the capacitance coupling from inhibit input to channel input or output. Address input also couple some voltage steps onto the channel signal levels. In certain applications, the external load-resistor current may include both $V_{DD}$ and signal line components. To avoid drawing $V_{DD}$ current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8V (calculated from $R_{ON}$ values shown in ELECTRICAL CHARACTERISTICS CHART). No $V_{DD}$ current will flow through $R_{L}$ if the switch current flows into terminal 1 on the HCF4097B. #### **TEST CIRCUIT** C<sub>L</sub> = 50pF or equivalent (includes jig and probe capacitance) $R_L^2 = 200 K\Omega$ $R_T = Z_{OUT}$ of pulse generator (typically $50\Omega$ ) #### WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle) #### WAVEFORM: PROPAGATION DELAY TIMES (f=1MHz; 50% duty cycle) ## **SO-24 MECHANICAL DATA** | DIM | | mm. | | inch | | | | | | |------|-------|-------|-------|-------|-------|-------|--|--|--| | DIM. | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | | | | Α | | | 2.65 | | | 0.104 | | | | | a1 | 0.1 | | 0.2 | 0.004 | | 0.008 | | | | | a2 | | | 2.45 | | | 0.096 | | | | | b | 0.35 | | 0.49 | 0.014 | | 0.019 | | | | | b1 | 0.23 | | 0.32 | 0.009 | | 0.012 | | | | | С | | 0.5 | | | 0.020 | | | | | | c1 | | 1 | 45° ( | typ.) | 40, | | | | | | D | 15.20 | | 15.60 | 0.598 | 100 | 0.614 | | | | | Е | 10.00 | | 10.65 | 0.393 | | 0.419 | | | | | е | | 1.27 | | 10/0 | 0.050 | | | | | | e3 | | 13.97 | | | 0.550 | | | | | | F | 7.40 | | 7.60 | 0.291 | | 0.300 | | | | | L | 0.50 | | 1.27 | 0.020 | | 0.050 | | | | | S | | | 8° (m | nax.) | | | | | | Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics ## © 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com